Corneal confocal microscopy alterations in Sjögren's syndrome dry eye.

Acta Ophthalmol

Multidisciplinary Department of Medical, Surgical and Dental Sciences, Second University of Napoli, Napoli, Italy.

Published: August 2017

Purpose: To evaluate light backscattering (LB) in corneal layers in patients with primary Sjögren's syndrome dry eye (SSDE) utilizing in vivo corneal confocal microscopy (IVCM) and to determine the eventual association with the lacrimal functional test values.

Methods: A complete ophthalmic evaluation, Schirmer test with and without stimulation, break-up time (BUT) and IVCM were performed on 55 patients affected by SSDE and in an age- and sex-matched cohort of healthy participants (HP). Light backscattering, measures as light reflectivity unit (LRU), detected by IVCM at Bowman's membrane (BM) at 50 μm, at 100 μm and at 200 μm deeper than BM was compared in the two groups. The correlations between LB values and lacrimal function results were evaluated.

Results: In patients affected by SSDE, LB was significantly higher (p < 0.001) in each corneal layer examined (+14 ± 6.33 LRU at BM), compared with HP. A good reverse correlation between the light reflectivity measures at BM with Schirmer test with (r = -0.91) and without (r = -0.90) stimulation and BUT (r = -0.88) was found. Correlations were lower in the deeper corneal layers.

Conclusion: Even if our results should be confirmed in further studies with a larger population, these findings show that IVCM is a device able to detect alterations in corneal layers in SSDE patients related to the lacrimal function. Light backscattering (LB) could be very useful for clinical diagnosis and management of SSDE.

Download full-text PDF

Source
http://dx.doi.org/10.1111/aos.13194DOI Listing

Publication Analysis

Top Keywords

corneal confocal
8
confocal microscopy
8
sjögren's syndrome
8
syndrome dry
8
dry eye
8
light backscattering
8
patients ssde
8
microscopy alterations
4
alterations sjögren's
4
eye purpose
4

Similar Publications

Introduction: Corneal confocal microscopy (CCM) detects neurodegeneration in mild cognitive impairment (MCI) and dementia and identifies subjects with MCI who develop dementia. This study assessed whether abnormalities in corneal endothelial cell (CEC) morphology are related to corneal nerve morphology, brain volumetry, cerebral ischemia, and cognitive impairment in MCI and dementia.

Methods: Participants with no cognitive impairment (NCI), MCI, and dementia underwent CCM to quantify corneal endothelial cell density (CECD) and area (CECA), corneal nerve fiber morphology, magnetic resonance imaging (MRI) brain volumetry, and severity of brain ischemia.

View Article and Find Full Text PDF

Background: Acanthamoeba keratitis (AK) is the most challenging corneal infection to treat, with conventional therapies often proving ineffective. While photoactivated chromophore for keratitis-corneal cross-linking (PACK-CXL) with riboflavin/UV-A has shown success in treating bacterial and fungal keratitis, and PACK-CXL with rose bengal/green light has demonstrated promise in fungal keratitis, neither approach has been shown to effectively eradicate AK. This case study explores a novel combined same-session treatment approach using both riboflavin/UV-A and rose bengal/green light in a single procedure.

View Article and Find Full Text PDF

In vivo confocal microscopy (IVCM) is a non-invasive imaging technique used to visualize the layers of the cornea and conjunctiva in real time. In patients with atopic keratoconjunctivitis (AKC) and vernal keratoconjunctivitis (VKC), this technology can be useful in diagnosing and monitoring the disease, as well as evaluating the efficacy of treatments. IVCM can reveal subclinical abnormalities in the corneal and conjunctival epithelium such as inflammatory cell infiltrates and tissue damage, which can provide insight into the pathogenesis of AKC.

View Article and Find Full Text PDF

Deep learning-based automated tool for diagnosing diabetic peripheral neuropathy.

Digit Health

December 2024

Department of Endocrinology and Metabolism, Qilu Hospital, Shandong University, Jinan, China.

Background: Diabetic peripheral neuropathy (DPN) is a common complication of diabetes, and its early identification is crucial for improving patient outcomes. Corneal confocal microscopy (CCM) can non-invasively detect changes in corneal nerve fibers (CNFs), making it a potential tool for the early diagnosis of DPN. However, the existing CNF analysis methods have certain limitations, highlighting the need to develop a reliable automated analysis tool.

View Article and Find Full Text PDF

Purpose: Osteogenesis imperfecta (OI) is a rare hereditary disorder of the connective tissue. Despite recent attention to corneal abnormalities in OI, understanding remains limited. This study aimed to comprehensively evaluate corneal changes in a large sample of OI patients compared to controls using in vivo confocal microscopy (IVCM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!