Regioselective oxidation and metalation of meso-unsubstituted azuliporphyrins.

Org Biomol Chem

Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, USA.

Published: November 2016

Azuliporphyrins are intriguing porphyrin analogues that incorporate an azulene ring in place of a pyrrolic unit. This system undergoes regioselective oxidation reactions and favors the formation of stable organometallic derivatives. Reaction of meso-unsubstituted azuliporphyrins with Co(CO) or CoCl·6HO gave 21-oxyazuliporphyrins, while Cu(OAc) produced the corresponding copper(ii) complexes. Treatment of an oxyazuliporphyrin with Ni(OAc) or Pd(OAc) afforded analogous nickel(ii) and palladium(ii) derivatives. Silver(i) acetate in pyridine reacted with azuliporphyrins to give moderate yields of silver(iii) benzocarbaporphyrins, and the prevalence of structures with a formyl moiety at the sterically crowded 2-position suggested that the ring contraction reactions were triggered in part by intramolecular attack from an axial peroxide ligand. Related thiaazuliporphyrins reacted with palladium(ii) acetate to give palladium(ii) benzothiacarbaporphyrins but this chemistry did not give rise to structures with 2-formyl groups, suggesting that the ring contraction reactions occurred by a different mechanistic pathway. These results demonstrate the existence of a rich tapestry of oxidation and metalation reactions for azuliporphyrin systems.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6ob02052fDOI Listing

Publication Analysis

Top Keywords

regioselective oxidation
8
oxidation metalation
8
meso-unsubstituted azuliporphyrins
8
ring contraction
8
contraction reactions
8
metalation meso-unsubstituted
4
azuliporphyrins
4
azuliporphyrins azuliporphyrins
4
azuliporphyrins intriguing
4
intriguing porphyrin
4

Similar Publications

Chemodivergent, enantio- and regioselective couplings of alkynes, aldehydes and silanes enabled by nickel/N-heterocyclic carbene catalysis.

Sci Bull (Beijing)

December 2024

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China. Electronic address:

Divergent synthesis of valuable molecules through common starting materials and metal catalysis represents a longstanding challenge and a significant research goal. We here describe chemodivergent, highly enantio- and regioselective nickel-catalyzed reductive and dehydrogenative coupling reactions of alkynes, aldehydes, and silanes. A single chiral Ni-based catalyst is leveraged to directly prepare three distinct enantioenriched products (silyl-protected trisubstituted chiral allylic alcohols, oxasilacyclopentenes, and silicon-stereogenic oxasilacyclopentenes) in a single chemical operation.

View Article and Find Full Text PDF

Given the prevalence of nitrogen-containing heterocycles in commercial drugs, selectively incorporating a single nitrogen atom is a promising scaffold hopping approach to enhance chemical diversity in drug discovery libraries. We harness the distinct reactivity of sulfenylnitrenes, which insert a single nitrogen atom to transform readily available pyrroles, indoles, and imidazoles into synthetically challenging pyrimidines, quinazolines, and triazines, respectively. Our additive-free method for skeletal editing employs easily accessible, benchtop-stable sulfenylnitrene precursors over a broad temperature range (-30 to 150°C).

View Article and Find Full Text PDF

Herein, we report a method for the regioselective alkylation and phosphonation of quinoline C4-H via a BH-mediated nucleophilic addition of Turbo Grignard reagents and phosphine oxide anions to quinolines bearing different substituents, affording the 4-alkyl and 4-phosphoryl quinolines and tetrahydroquinolines after one-pot oxidation or reduction. The results indicate that coordination of the BH group can activate substrates toward a potential 1,4-dearomative addition and subtly control the regioselectivity by preventing the 1,2-dearomative addition.

View Article and Find Full Text PDF

Balance between photoreduction efficiency, cofactor affinity, and allosteric coupling of halogenase flavoenzymes.

Photochem Photobiol Sci

December 2024

Biophysical Chemistry and Diagnostics, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany.

Flavin-dependent halogenases (FDHs) are promising candidates for the sustainable production of halogenated organic molecules by biocatalysis. FDHs require only oxygen, halide and a fully reduced flavin adenine dinucleotide (FADH) cofactor to generate the reactive HOX that diffuses 10 Å to the substrate binding pocket and enables regioselective oxidative halogenation. A key challenge for the application of FDHs is the regeneration of the FADH.

View Article and Find Full Text PDF

Total Synthesis and Anti-Inflammatory Activity of Tectoridin and Related Isoflavone Glucosides.

J Nat Prod

December 2024

Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, China.

The first total syntheses of four isoflavone glucosides, tectoridin (), tectoridin A (), tectorigenin 7--β-d-glucopyranosyl-12--β-d-glucopyranoside (), and isotectroigenin 7--β-d-glucopyranoside (), have been accomplished. Key steps in our synthetic approach include a regioselective halogenation reaction, followed by methanolysis to introduce the -OCH group into isoflavone frameworks and a PTC-promoted stereoselective glycosidation to establish glycosidic bonds. The synthesized isoflavone glucosides (-) and their corresponding aglycones ( and ) were evaluated for anti-inflammatory activity against nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1 β (IL-1β) in lipopolysaccharide (LPS)-induced RAW264.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!