Introduction: Thermal conditions during photorefractive keratectomy might be an important issue related to the corneal wound healing and long-term outcomes.

Aim: Authors tried to find out the importance of temperature conditions during the treatment.

Method: One eye of 90 patients has been included into the study. Photorefractive keratoctomy was applied with Carl Zeiss MEL 70, MEL 80 and Wavelight Allegretto excimer lasers. EBRO TLC 730 infrared thermometer was used for the measurement of surface temperature of the cornea before epithelial removal, as well as before and after the treatment. Average age of the patients was 25.5 ± 3 yr. Average myopic correction was -3.2 ± 0.8 Dpt.

Results: Statistically significant difference was found in temperature change between MEL 80 and the other two types of excimer laser devices.

Conclusions: Different air flow conditions of the smoke removal system might have an influence on changes of the corneal temperature during treatment, but the refractive results were not influenced by this issue. Orv. Hetil., 2016, 157(43), 1717-1721.

Download full-text PDF

Source
http://dx.doi.org/10.1556/650.2016.30524DOI Listing

Publication Analysis

Top Keywords

surface temperature
8
air flow
8
flow conditions
8
temperature
5
[relationship corneal
4
corneal surface
4
temperature air
4
conditions
4
conditions refractive
4
refractive laser
4

Similar Publications

Single-crystal Au(111), renowned for its chemically inert surface, long-range "herringbone" reconstruction, and high electrical conductivity, has long served as an exemplary template in diverse fields, , crystal epitaxy, electronics, and electrocatalysis. However, commercial Au(111) products are high-priced and limited to centimeter sizes, largely restricting their broad applications. Herein, a low-cost, high-reproducible method is developed to produce 4 in.

View Article and Find Full Text PDF

X-ray structural analysis of bis(guanidinium) disodium hypodiphosphate heptahydrate, (CHN)Na(PO)·7HO revealed close Na...

View Article and Find Full Text PDF

Atomic force microscopy-infrared spectroscopy (AFM-IR) is a photothermal scanning probe technique that combines nanoscale spatial resolution with the chemical analysis capability of mid-infrared spectroscopy. Using this hybrid technique, chemical identification down to the single molecule level has been demonstrated. However, the mechanism at the heart of AFM-IR, the transduction of local photothermal heating to cantilever deflection, is still not fully understood.

View Article and Find Full Text PDF

Vegetation-climate feedbacks across scales.

Ann N Y Acad Sci

January 2025

Institute for Earth System Science and Remote Sensing, Leipzig University, Leipzig, Germany.

Vegetation is often viewed as a consequence of long-term climate conditions. However, vegetation itself plays a fundamental role in shaping Earth's climate by regulating the energy, water, and biogeochemical cycles across terrestrial landscapes. It exerts influence by consuming water resources through transpiration and interception, lowering atmospheric CO concentration, altering surface roughness, and controlling net radiation and its partitioning into sensible and latent heat fluxes.

View Article and Find Full Text PDF

Electrocatalytic CO reduction into high-value multicarbon products offers a sustainable approach to closing the anthropogenic carbon cycle and contributing to carbon neutrality, particularly when renewable electricity is used to power the reaction. However, the lack of efficient and durable electrocatalysts with high selectivity for multicarbons severely hinders the practical application of this promising technology. Herein, a nanoporous defective AuCu single-atom alloy (De-AuCu SAA) catalyst is developed through facile low-temperature thermal reduction in hydrogen and a subsequent dealloying process, which shows high selectivity toward ethylene (CH), with a Faradaic efficiency of 52% at the current density of 252 mA cm under a potential of -1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!