Kisspeptin-10 and the G protein-coupled receptor 54 are differentially expressed in the canine pregnant uterus and trophoblast cells.

Reprod Domest Anim

Department for Obstetrics and Gynaecology, Faculty of Veterinary Medicine, Near East University, Nicosia, Turkish Republic of Northern Cyprus.

Published: April 2017

Uterine tissue was collected from bitches after ovariohysterectomy at different times after ovulation. Samples were assigned to four groups: metestrous non-pregnant, day 10-12, n = 4; pre-implantation, day 10-12, n = 9; post-implantation, day 18-25, n = 13; mid-gestation, day 30-40, n = 7. RT-qPCR detection was performed for kiss1 and the G protein-coupled receptor 54 (GPR54, specific receptor for kisspeptin). In addition, immunohistochemistry was performed for detection of kisspeptin-10 (KP-10), GPR54, as well as pan-cytokeratin and vimentin. The latter two were included to differentiate the different placental cell types. The percentage of positive stained cells was evaluated, and an immunoreactivity score (IRS) was obtained by multiplying the labelling intensity score (0-3) with the percentage of immunolabelled cells (range: 0-300). In non-pregnant and pre-implantation tissues, gene expression was highly variable for kiss1 and GPR54. Expression of GPR54 was higher before embryo adhesion than during post-implantation and mid-gestation (p < .05), whereas there was no difference found between groups for kiss1. Except during the pre-implantation period, KP-10 expression was higher in the non-pregnant uterus compared to all gestational periods investigated, indicating a pregnancy-related downregulation. In the pre-implantation period, KP-10 was present in larger vessels only, whereas the presence of GPR54 in vessels was found in all samples, with most labelling in the post-implantation period. KP-10 was present in superficial uterine glands, GPR54 in superficial and deep uterine glands of the post-implantation uterus. In myocytes, the highest staining for KP-10 was seen in the non-pregnant uterus, whereas the highest staining for GPR54 was seen in post-implantation and mid-gestation. Syncytiotrophoblast cells stained for both KP-10 and GPR54 in post-implantation and mid-gestation, with maximum intensity for GPR54 in the latter. We conclude that KP-10 and GPR54 are expressed in the canine uterus and trophoblast cells. However, during pregnancy, expression of both proteins seems to be differentially regulated.

Download full-text PDF

Source
http://dx.doi.org/10.1111/rda.12818DOI Listing

Publication Analysis

Top Keywords

protein-coupled receptor
8
day 10-12
8
kisspeptin-10 protein-coupled
4
receptor differentially
4
differentially expressed
4
expressed canine
4
canine pregnant
4
pregnant uterus
4
uterus trophoblast
4
trophoblast cells
4

Similar Publications

Metabolically stable apelin analogs: development and functional role in water balance and cardiovascular function.

Clin Sci (Lond)

January 2025

Center for Interdisciplinary Research in Biology, College de France, Institut National de la Santé et de la Recherche Médicale, Paris, France.

Apelin, a (neuro) vasoactive peptide, plays a prominent role in controlling water balance and cardiovascular functions. Apelin and its receptor co-localize with vasopressin in magnocellular vasopressinergic neurons. Apelin receptors (Apelin-Rs) are also expressed in the collecting ducts of the kidney, where vasopressin type 2 receptors are also present.

View Article and Find Full Text PDF

This study aims to investigate the expression of GPER in EC, assess the impact of estrogen on the proliferation and migration of EC via GPER, and examine the potential role of GPER in mediating the NOTCH pathway to influence EC proliferation and migration. The expression of GPER and its correlation with clinicopathological features were investigated using clinical data. Cell proliferation was assessed through MTT and EdU assays, while cell migration ability was evaluated using wound healing and transwell assays.

View Article and Find Full Text PDF

A Y178C rhodopsin mutation causes aggregation and comparatively severe retinal degeneration.

Cell Death Discov

January 2025

Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA.

Rhodopsin is the light-activated G protein-coupled receptor that initiates vision in photoreceptor cells of the retina. Numerous mutations in rhodopsin promote receptor misfolding and aggregation, causing autosomal dominant retinitis pigmentosa, a progressive retinal degenerative disease. The mechanism by which these mutations cause photoreceptor cell death, and the role aggregation plays in this process is still unclear.

View Article and Find Full Text PDF

Structure and function of a near fully-activated intermediate GPCR-Gαβγ complex.

Nat Commun

January 2025

Department of Molecular Biosciences, University of South Florida, 4202 E Fowler Ave, Tampa, FL, 33620, USA.

Unraveling the signaling roles of intermediate complexes is pivotal for G protein-coupled receptor (GPCR) drug development. Despite hundreds of GPCR-Gαβγ structures, these snapshots primarily capture the fully activated complex. Consequently, the functions of intermediate GPCR-G protein complexes remain elusive.

View Article and Find Full Text PDF

Melatonin, a molecule with diverse biological functions, is ubiquitously present in living organisms. There is significant interest in understanding melatonin signal transduction pathways in humans, particularly due to its critical role in regulating the sleep-wake cycle. However, a knowledge gap remains in fully elucidating the mechanisms by which melatonin influences circadian regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!