Atheromatous plaques contain heavily lipid-loaded macrophages that die, hence generating the necrotic core of these plaques. Since plaque instability and rupture is often correlated with a large necrotic core, it is important to understand the mechanisms underlying foam cell death. Furthermore, macrophages within the plaque are associated with hypoxic areas but little is known about the effect of low oxygen partial pressure on macrophage death. The aim of this work was to unravel macrophage death mechanisms induced by oxidized low-density lipoproteins (LDL) both under normoxia and hypoxia. Differentiated macrophages were incubated in the presence of native, copper sulfate-oxidized, or myeloperoxidase-modified LDL. The unfolded protein response, apoptosis, and autophagy were then investigated. The unfolded protein response and autophagy were triggered by myeloperoxidase-modified LDL and, to a larger extent, by copper sulfate-oxidized LDL. Electron microscopy observations showed that oxidized LDL induced excessive autophagy and apoptosis under normoxia, which were less marked under hypoxia. Myeloperoxidase-modified LDL were more toxic and induced a higher level of apoptosis. Hypoxia markedly decreased apoptosis and cell death, as marked by caspase activation. In conclusion, the cell death pathways induced by copper sulfate-oxidized and myeloperoxidase-modified LDL are different and are differentially modulated by hypoxia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5045064 | PMC |
http://dx.doi.org/10.2147/HP.S65242 | DOI Listing |
Int J Mol Sci
August 2024
Department of Biology, Faculty of Arts and Sciences, University of Balamand, El-Koura P.O. Box 100, Lebanon.
Atherosclerosis is a chronic inflammatory disease that involves modified low-density lipoproteins (LDL) which play a pivotal role in the initiation and progression of the disease. Myeloperoxidase oxidized LDL (Mox-LDL) is considered to be the most patho-physiologically relevant type of modified LDL and has been reported to be ubiquitously present in atheroma plaques of patients with atherosclerosis. Besides its involvement in the latter disease state, Mox-LDL has also been shown to be implicated in the pathogenesis of various illnesses including sleep disorders, which are in turn associated with heart disease and depression in many intricate ways.
View Article and Find Full Text PDFRev Cardiovasc Med
December 2023
Department of Biology, Faculty of Arts and Sciences, University of Balamand, 100 El-Koura, Lebanon.
Background: Cardiovascular disease that is caused by atherosclerosis is the leading cause of death worldwide. Atherosclerosis is primarily triggered by endothelial dysfunction and the accumulation of modified low-density lipoprotein (LDL) particles in the subendothelial space of blood vessels. Early reports have associated oxidized LDL with altered fibrinolysis and atherogenesis.
View Article and Find Full Text PDFExp Ther Med
December 2019
Department of Biology, Faculty of Sciences, University of Balamand, Tripoli 100, Lebanon.
Cardiovascular disease associated with atherosclerosis is a leading cause of death worldwide. Atherosclerosis is primarily caused by the dysfunction of vascular endothelial cells and the subendothelial accumulation of oxidized forms of low-density lipoproteins (LDL). Early observations have associated fibrin deposition with atheroma plaque formation, which has led to the proposition that a decrease in endothelial cell fibrinolysis may negatively influence atherogenesis.
View Article and Find Full Text PDFHypoxia (Auckl)
September 2014
Laboratory of Biochemistry and Cellular Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium.
Atheromatous plaques contain heavily lipid-loaded macrophages that die, hence generating the necrotic core of these plaques. Since plaque instability and rupture is often correlated with a large necrotic core, it is important to understand the mechanisms underlying foam cell death. Furthermore, macrophages within the plaque are associated with hypoxic areas but little is known about the effect of low oxygen partial pressure on macrophage death.
View Article and Find Full Text PDFPLoS One
December 2012
Experimental Medicine Laboratory, Université Libre de Bruxelles 222 Unit, CHU Charleroi, A. Vésale, Montigny-Le-Tilleul, Belgium.
Background: Blood fluidity is maintained by a delicate balance between coagulation and fibrinolysis. The endothelial cell surface is a key player in this equilibrium and cell surface disruptions can upset the balance. We investigated the role of pericellular myeloperoxidase oxidized LDLs (Mox-LDLs) in this balance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!