Superparamagnetic iron oxide (FeO) and highly anisotropic barium hexaferrite (BaFeO) nanoparticles were coated with an anti-inflammatory drug and magnetically transported through mucus produced by primary human airway epithelial cells. Using wet planetary ball milling, dl-2-amino-3-phosphonopropionic acid-coated BaFeO nano-particles (BaNPs) of 1-100 nm in diameter were prepared in water. BaNPs and conventional 20-30-nm FeO nanoparticles (FeNPs) were then encased in a polymer (PLGA) loaded with dexamethasone (Dex) and tagged for imaging. PLGA-Dex-coated BaNPs and FeNPs were characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), and superconducting quantum interference device (SQUID) magnetometry. Both PLGA-Dex-coated BaNPs and FeNPs were transferred to the surface of a ~100-μm thick mucus layer of air-liquid interface cultured primary normal human tracheobronchial epithelial (NHTE) cells. Within 30 min, the nanoparticles were pulled successfully through the mucus layer by a permanent neodymium magnet. The penetration time of the nanomedicine was monitored using confocal microscopy and tailored by varying the thickness of the PLGA-Dex coating around the particles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5070545 | PMC |
http://dx.doi.org/10.1007/s12668-016-0216-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!