Aptamer-functionalized magnetic graphene oxide conjugates loaded with indocyanine green (ICG) dye, or Apt@ICG@mGO, have been successfully developed for dual-targeted photothermal and photodynamic therapy. In general, a drug or its carrier or their dosage can be imprtant important issues in terms of toxicity. However, in this system, each component used is quite safe, biocompatibe and clean. For instance, ICG, a Food and Drug Administration (FDA) approved near-infrared (NIR) dye, serves as both a photothermal and photodynamic agent. It is immobilized on the surface of mGO via a physical interaction called "π-π stacking". The mGO, as a most biocomptible member of the carbo family, is selected for use as a platform for aptamer and ICG dye conjugation, as well as as a photothermal agent. The light in the near-infrared region (NIR) was chosen as a harmless light source for activating the agents for photothermal therapy (PTT) and photodynamic therapy (PDT). The magnetic properties of mGO are also used for separation of Apt@ICG@mGO conjugates from the reaction medium. Aptamer sgc8 acts as a targeting ligand to selectively and specifically bind to a protein on the membrane of cancer cell line CCRF-CEM. After the aptamer- functionalized ICG@mGO conjugates are incubated with target CEM cells at 37 °C for 2 hours, they are bound to cells or they may be internalized into the cell via endocytosis. More significantly, we demonstrated that the Apt@ICG@mGO conjugates produce heat for photothermal therapy (PTT) and singlet oxygen for photodynamic therapy (PDT) upon NIR laser irradiation at 808 nm. Thus, remarkably efficient cancer cell destructions with 41% and 60% and 82% cell killing using 10, 50 and 100 ppm Apt@ICG@mGO, respectively are achieved in 5 min light exposure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5070673 | PMC |
http://dx.doi.org/10.1039/C6RA06798K | DOI Listing |
Open Med (Wars)
January 2025
Department of Dermatology and Venereology, The Third Affiliated Hospital, Southern Medical University, 183 West Zhongshan Road, Guangzhou, China.
Chromoblastomycosis (CBM) is a chronic neglected fungal disease that causes serious damage to the physical and mental health of patients. 5-Aminolevulinic acid photodynamic therapy (ALA-PDT) has garnered significant attention in the recent era for the treatment of CBM and has exhibited promising effects in several clinical case reports. We established a mice footpad infection model with and analyzed the impact of PDT treatment on the immune response of macrophages using single-cell sequencing.
View Article and Find Full Text PDFCase Rep Dermatol
January 2025
Department of Dermatology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, PR China.
Introduction: Basal cell carcinoma (BCC) is the most common type of skin malignancy, accounting for approximately 80% of all non-melanoma skin cancers (NMSCs). Ultraviolet (UV) exposure is a significant risk factor for BCC development, which typically occurs in sun-exposed areas. BCC arising in non-sun-exposed regions, such as the nipple-areola complex (NAC), is exceedingly rare, with fewer than 100 cases reported globally.
View Article and Find Full Text PDFAm J Transl Res
December 2024
Department of Dermatology, Qingpu Branch of Zhongshan Hospital, Fudan University Shanghai, China.
Objective: To analyze the clinical application value of CO laser combined with 5-aminolevulinic acid photodynamic therapy for periungual and plantar warts.
Methods: Data from patients with periungual and plantar warts treated at Qingpu branch of Zhongshan Hospital, Fudan University between August 2022 and January 2024 were retrospectively analyzed. After screening based on inclusion and exclusion criteria, 96 patients were included and categorized into two groups according to their treatment regimens: a combination group (n=50, receiving CO laser therapy and 5-aminolevulinic acid photodynamic therapy) and a control group (n=46, undergoing CO laser treatment alone).
Mikrochim Acta
January 2025
Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
MILs (Materials Institute Lavoisier), as nanocarriers based on metal-organic frameworks (MOFs), are one of the most advanced drug delivery vehicles that are now a major part of cancer treatment research. This review article highlights the key features and components of MIL nanocarriers for the development and improvement of these nanocarriers for drug delivery. Surface coatings are one of the key components of MIL nanocarriers, which play the role of stabilizing the nanocarrier, pH-dependent drug release, increasing the half-life of the drug, and targeting the carrier.
View Article and Find Full Text PDFDig Endosc
January 2025
Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!