A significant challenge associated with systemic delivery of cationic antimicrobial peptides and polymers lies in their limited hemocompatibility toward vast numbers of circulating red blood cells (RBCs). Supramolecular assembly of cationic peptides and polymers can be an effective strategy to develop an array of antimicrobial nanomaterials with tunable material structures, stability and thus optimized bioactivity to overcome some of the existing challenges associated with conventional antimicrobials. In this work, we will demonstrate the supramolecular design of self-assembling antimicrobial nanofibers (SAANs) which have tunable supramolecular nanostructures, stability, internal molecular packing and surface chemistry through self-assembly of designed cationic peptides and peptide-PEG conjuguates. The interaction of the SAANs with human RBCs was evaluated in a stringent biological assay (beyond a traditional hemolysis assay) where both hemolytic and eryptotic activity were examined to establish a fundamental understanding on the correlation between material structure and hemocompatibility. It was found that although the SAANs showed moderate hemolytic activities, their abilities to induce eryptosis vary significantly and are much more sensitive to the internal molecular packing, supramolecular nanostructure and stability of the nanofiber. Improved hemocompatibility requires PEGylation on stable supramolecular nanofibers composed of highly organized β-sheet structure while PEG conjugation on weakly packed nanofibers composed of partially denatured β-sheets did not show improvement. The current study reveals the fundamental mechanism involved in the selective hemocompatibility improvement of the SAANs upon PEG conjugation. The structure-activity relationship developed in this study will provide important guidance for the future design of a broader family of peptide and polymer-based assemblies with optimized antimicrobial activity and hemocompatibility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5070802PMC
http://dx.doi.org/10.1039/C5RA24553BDOI Listing

Publication Analysis

Top Keywords

self-assembling antimicrobial
8
antimicrobial nanofibers
8
peptides polymers
8
cationic peptides
8
internal molecular
8
molecular packing
8
nanofibers composed
8
peg conjugation
8
supramolecular
6
hemocompatibility
6

Similar Publications

Gallic acid-grafted chitosan photothermal hydrogels functionalized with mineralized copper-sericin nanoparticles for MRSA-infected wound management.

Carbohydr Polym

March 2025

College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China. Electronic address:

The management of wounds infected with drug-resistant bacteria represents a significant challenge to public health globally. Nanotechnology-functionalized photothermal hydrogel with good thermal stability, biocompatibility and tissue adhesion exhibits great potential in treating these infected wounds. Herein, a novel photothermal hydrogel (mCS-Cu-Ser) was prepared through in situ mineralization in the hydrogel networks and ion cross-linking driven by copper ions (∼3 mM).

View Article and Find Full Text PDF

Nanoparticle Vaccine Triggers Interferon-Gamma Production and Confers Protective Immunity against Porcine Reproductive and Respiratory Syndrome Virus.

ACS Nano

January 2025

Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.

The swine industry annually suffers significant economic losses caused by porcine reproductive and respiratory syndrome virus (PRRSV). Because the available commercial vaccines have limited protective efficacy against epidemic PRRSV, there is an urgent need for innovative solutions. Nanoparticle vaccines induce robust immune responses and have become a promising direction in vaccine development.

View Article and Find Full Text PDF

Antibiotic abuse has led to an increasingly serious risk of antimicrobial resistance, developing alternative antimicrobials to combat this alarming issue is urgently needed. Rhesus theta defensin-1 (RTD-1) is a theta-defensin contributing to broad-spectrum bactericidal activity via the mechanisms of membrane perturbation. Intriguingly, human defensin-6 (HD6), an enteric defensin secreted by Paneth cells without direct bactericidal effect, could self-assembled into fibrous networks to trap enteric pathogens for assistance of innate immunity.

View Article and Find Full Text PDF

There have been remarkable advancements in regenerative medicine for bone regeneration, tackling the worldwide health concern of tissue loss. Tissue engineering uses the body's natural capabilities and applies biomaterials and bioactive molecules to replace damaged or lost tissues and restore their functionality. While synthetic ceramics have overcome some challenges associated with allografts and xenografts, they still need essential growth factors and biomolecules.

View Article and Find Full Text PDF

Dynamic and quantitative assessment of quercetin for cardiac oxidative stress injury prevention using sensitive cardiomyocyte based biosensing.

Biosens Bioelectron

March 2025

Diabetes and Obesity Department, Tongde Hospital of Zhejiang Province, Hangzhou, China; Integrated Chinese and Western Medicine Department, Center for General Practice Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China. Electronic address:

Myocardial infarction is a leading cause of morbidity and mortality associated with cardiovascular diseases worldwide. Although novel medications and treatments greatly alleviate patient suffering, challenges related to prognostic limit the recovery of cardiac function. Currently, treatment with monomeric compounds displays promise in prognostic interventions for cardiac diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!