While the ability of honeybees to navigate relying on sky-compass information has been investigated in a large number of behavioral studies, the underlying neuronal system has so far received less attention. The sky-compass pathway has recently been described from its input region, the dorsal rim area (DRA) of the compound eye, to the anterior optic tubercle (AOTU). The aim of this study is to reveal the connection from the AOTU to the central complex (CX). For this purpose, we investigated the anatomy of large microglomerular synaptic complexes in the medial and lateral bulbs (MBUs/LBUs) of the lateral complex (LX). The synaptic complexes are formed by tubercle-lateral accessory lobe neuron 1 (TuLAL1) neurons of the AOTU and GABAergic tangential neurons of the central body's (CB) lower division (TL neurons). Both TuLAL1 and TL neurons strongly resemble neurons forming these complexes in other insect species. We further investigated the ultrastructure of these synaptic complexes using transmission electron microscopy. We found that single large presynaptic terminals of TuLAL1 neurons enclose many small profiles (SPs) of TL neurons. The synaptic connections between these neurons are established by two types of synapses: divergent dyads and divergent tetrads. Our data support the assumption that these complexes are a highly conserved feature in the insect brain and play an important role in reliable signal transmission within the sky-compass pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5053983 | PMC |
http://dx.doi.org/10.3389/fnbeh.2016.00186 | DOI Listing |
Alzheimers Dement
December 2024
Department of Neurology, Mayo Clinic, Rochester, MN, USA.
Background: Alzheimer's disease (AD) is an age-dependent neurodegenerative disorder with limited treatment options. As it progresses, synapse degeneration is the most important feature contributing to cognitive dysfunction. Mitochondria supply synapses with ATP for neurotransmitter release and vesicle recycling and buffer calcium concentrations.
View Article and Find Full Text PDFBackground: In the brain as in other organs, complement contributes to immune defence and housekeeping to maintain homeostasis. Sources of complement may include local production by brain cells and influx from the periphery, the latter severely restricted by the blood brain barrier (BBB) in healthy brain. Dysregulation of complement leads to excessive inflammation, direct damage to self-cells and propagation of injury.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Nova Southeastern Dr. Kiran C. Patel College of Osteopathic Medicine - TBR, Clearwater, FL, USA.
Background: Research heavily suggests that brain-derived neurotrophic factor (BDNF), vital for neuronal growth and plasticity, and cholecystokinin (CCK), a satiety hormone that regulates BDNF levels, are altered in Alzheimer's Disease pathophysiology. Factors such as dysbiosis of gut microbiota and poor food habits may affect CCK and BDNF release and brain function. The objective is to evaluate the effects of dietary habits, gut microbiota, and exercise on BDNF and CCK release in Alzheimer's Disease patients.
View Article and Find Full Text PDFBiomed Eng Lett
January 2025
Department of Computer Engineering, Kwangwoon University, Seoul, 01897 Republic of Korea.
Robotic systems rely on spatio-temporal information to solve control tasks. With advancements in deep neural networks, reinforcement learning has significantly enhanced the performance of control tasks by leveraging deep learning techniques. However, as deep neural networks grow in complexity, they consume more energy and introduce greater latency.
View Article and Find Full Text PDFBrain Pathol
January 2025
The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, VIC, Australia.
The last pregnancy trimester is critical for fetal brain development but is a vulnerable period if the pregnancy is compromised by fetal growth restriction (FGR). The impact of FGR on the maturational development of neuronal morphology is not known, however, studies in fetal sheep allow longitudinal analysis in a long gestation species. Here we compared hippocampal neuron dendritogenesis in FGR and control fetal sheep at three timepoints equivalent to the third trimester of pregnancy, complemented by magnetic resonance image for brain volume, and electrophysiology for synaptic function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!