Background: The use of non-aqueous organic media is becoming increasingly important in many biotechnological applications in order to achieve process intensification. Such media can be used, for example, to directly extract poorly water-soluble toxic products from fermentations. Likewise many biological reactions require the supply of oxygen, most normally from air. However, reliable online measurements of oxygen concentration in organic solvents (and hence oxygen transfer rates from air to the solvent) has to date proven impossible due to limitations in the current analytical methods.

Results: For the first time, online oxygen measurements in non-aqueous media using a novel optical sensor are demonstrated. The sensor was used to measure oxygen concentration in various organic solvents including toluene, THF, isooctane, DMF, heptane and hexane (which have all been shown suitable for several biological applications). Subsequently, the oxygen transfer rates from air into these organic solvents were measured.

Conclusion: The measurement of oxygen transfer rates from air into organic solvents using the dynamic method was established using the solvent resistant optical sensor. The feasibility of online oxygen measurements in organic solvents has also been demonstrated, paving the way for new opportunities in process control. © 2015 The Authors. published by JohnWiley & Sons Ltd on behalf of Society of Chemical Industry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5064614PMC
http://dx.doi.org/10.1002/jctb.4862DOI Listing

Publication Analysis

Top Keywords

organic solvents
24
oxygen transfer
16
air organic
12
transfer rates
12
rates air
12
measurement oxygen
8
oxygen
8
oxygen concentration
8
concentration organic
8
online oxygen
8

Similar Publications

In this report the photophysical property of newly synthesized fluorescein based derivative 2-(5-((2,4-dichlorophenyl)diazenyl)-6-hydroxy-3-oxo-3H-xanthen-9-yl)benzoic acid has studied by spectroscopic and theoretical that is by Density Functional Theory technique. The structural and functional group of the synthesized molecule was confirmed by nuclear magnetic resonance and fourier transform infrared spectroscopy technique, and from the result so far obtained has been confirmed that molecule has a stable structure and confirmed the presence the functional groups present in the sample. The optical properties of the molecule are studied using the spectroscopic technique and it has revealed the solute-solvent interaction behaviour of the molecule and it has been observed that the bathochromic shift was of about 5 nm, from the fluorescence measurement it has revealed that the emission has been observed at green region and from the power spectra it has been confirmed the same.

View Article and Find Full Text PDF

Ionic Liquid Aided [C]CO Fixation for Synthesis of C-carbonyls.

ChemistryOpen

January 2025

Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, CAMH, Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada.

Tributyl(ethyl)phosphonium oxopentenolate ([P][Pen]) is an ionic liquid developed to capture CO and has shown ability to catalyze carbonylation reactions in organic chemistry. Carbon-11 (C, t=20.4 min) labeled CO is a highly versatile building block for the synthesis of positron emission tomography (PET) radiotracers that are applied for medical imaging.

View Article and Find Full Text PDF

The first successful synthesis of 1,2,3-triazoles using CyreneTM as a biodegradable and non-toxic solvent in click chemistry has been developed. In contrast to previous methods, this sustainable approach allows product isolation by simple precipitation in water, eliminating the need for organic solvent extractions and column chromatography purifications, thus minimizing waste consumption while reducing operational costs. The protocol, performed also at gram scale, has broad applicability and versatility, as shown with complex substrates like biologically active coumarins or triazole-linked bifunctional molecules.

View Article and Find Full Text PDF

Monitoring persistent organic pollutants (POPs) with endocrine-disrupting properties poses significant analytical challenges due to labor-intensive, costly, and environmentally unsustainable procedures. This study developed an efficient and robust approach for the simultaneous detection of diverse groups of semi-volatile organics in water and sediment samples using gas chromatography-tandem mass spectrometry (GC-MS). Two extraction methods were studied for determining POPs in water and sediments.

View Article and Find Full Text PDF

Enriching the structural diversity of metal-organic frameworks (MOFs) is of great importance in developing functional porous materials with specific properties. New MOF structures can be accessed through the rational design of organic linkers with diverse geometric conformations, and their structural complexity can be enhanced by choosing linkers with reduced symmetry. Herein, a series of Zr-based MOFs with unprecedented topologies were developed through a linker desymmetrization and conformation engineering approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!