There are several issues attributed with abdominal aortic aneurysm endovascular repair. The positioning of bifurcated stent-grafts (SG) may affect SG hemodynamics. The hemodynamics and geometrical parameters of crossing or non-crossing graft limbs have not being totally accessed. Eight patient-specific SG devices and four pre-operative cases were computationally simulated, assessing the hemodynamic and geometrical effects for crossed (n= 4) and non-crossed (n= 4) configurations. SGs eliminated the occurrence of significant recirculations within the sac prior treatment. Dean's number predicted secondary flow locations with the greatest recirculations occurring at the outlets especially during the deceleration phase. Peak drag force varied from 3.9 to 8.7N, with greatest contribution occurring along the axial and anterior/posterior directions. Average resultant drag force was 20% smaller for the crossed configurations. Maximum drag force orientation varied from 1.4° to 51°. Drag force angle varied from 1° to 5° during one cardiac cycle. 44% to 62% of the resultant force acted along the proximal centerline where SG migration is most likely to occur. The clinician's decision for SG positioning may be a critical parameter, and should be considered prior to surgery. All crossed SG devices had an increased spiral flow effect along the distal legs with reductions in drag forces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.medengphy.2016.09.011 | DOI Listing |
Sci Rep
January 2025
Department of Mechanical Engineering, College of Engineering, University of Ha'il, 81451, Ha'il City, Saudi Arabia.
Non-Newtonian fluids are also widely used in a variety of scientific, engineering, and industrial domains, including the petroleum sector and polymer technologies. They are vital in the development of drag-reducing agents, damping and braking systems, food manufacturing, personal protective equipment, and the printing industry. Fluid movement and transport via porous materials draw a lot of attention; they are important in science and technology.
View Article and Find Full Text PDFAnal Chem
January 2025
Nano Lithography and Manufacturing Research Center, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Daejeon 34103, South Korea.
Efficient separation and preconcentration of nanoparticles are crucial in a wide range of biomedical applications, particularly as target substances continue to diminish in size. In this study, we introduce an electric field-assisted membrane system that synergistically combines oversized-pore membranes with an electrokinetic particle retention mechanism. Utilizing Ti/Au-coated poly(tetrafluoroethylene) (PTFE) membranes, our approach generates electrokinetic forces to effectively separate and retain charged nanoparticles even smaller than the pores, achieving a separation efficiency over 99% and a preconcentration factor of 1.
View Article and Find Full Text PDFPLoS One
December 2024
School of Mechanical Engineering, Liaoning Technical University, Fuxin, China.
Based on the 5615 working face of Beisu Coal Mine, a virtual prototype of the shearer cable drag system was developed using the MG2×70/325-BWD electric traction shearer as the carrier, in combination with CERO and ADAMS software. The shearer cable was equivalently modeled using the discrete rigid body method to study the dynamic characteristics of the drag system. This research provides a foundation for the design and optimization of both the cable and cable clamps.
View Article and Find Full Text PDFBiomimetics (Basel)
November 2024
Robotics Institute, Beihang University, Beijing 100191, China.
Many flights, with their precise positioning capabilities, have provided rich inspiration for designing insect-styled micro air vehicles. However, researchers have not widely studied their flight ability. In particular, research on the maneuverability of using integrated kinematics and aerodynamics is scarce.
View Article and Find Full Text PDFFront Sports Act Living
December 2024
National Institute of Fitness and Sports in Kanoya, Kanoya, Japan.
Introduction: This study analyzed the impact of various overload conditions on sprint performance compared to free sprinting, aiming to identify the loading scenarios that most closely replicate the mechanics of unresisted sprints across the full acceleration spectrum. While velocity-based training methods have gained popularity, their applicability is limited to the plateau phase of sprinting.
Methods: To address this limitation, we employed cluster analysis to identify scenarios that best replicate the mechanical characteristics of free sprinting across various overload conditions.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!