Scaffolding in the Spliceosome via Single α Helices.

Structure

Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany; Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Straße 15, 12489 Berlin, Germany. Electronic address:

Published: November 2016

The spliceosomal B complex-specific protein Prp38 forms a complex with the intrinsically unstructured proteins MFAP1 and Snu23. Our binding and crystal structure analyses show that MFAP1 and Snu23 contact Prp38 via ER/K motif-stabilized single α helices, which have previously been recognized only as rigid connectors or force springs between protein domains. A variant of the Prp38-binding single α helix of MFAP1, in which ER/K motifs not involved in Prp38 binding were mutated, was less α-helical in isolation and showed a reduced Prp38 affinity, with opposing tendencies in interaction enthalpy and entropy. Our results indicate that the strengths of single α helix-based interactions can be tuned by the degree of helix stabilization in the unbound state. MFAP1, Snu23, and several other spliceosomal proteins contain multiple regions that likely form single α helices via which they might tether several binding partners and act as intermittent scaffolds that facilitate remodeling steps during assembly of an active spliceosome.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.str.2016.09.007DOI Listing

Publication Analysis

Top Keywords

single helices
12
mfap1 snu23
12
single
5
scaffolding spliceosome
4
spliceosome single
4
helices spliceosomal
4
spliceosomal complex-specific
4
complex-specific protein
4
prp38
4
protein prp38
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!