Pb exposure prolongs the time period for postnatal transient uptake of 5-HT by murine LSO neurons.

Neurotoxicology

Center for Structural and Functional Neuroscience, Center for Environmental Health Sciences, Department of Biomedical & Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, The University of Montana, Missoula, MT 59812, United States. Electronic address:

Published: December 2016

Pb exposure is associated with cognitive deficits including Attention Deficit Hyperactivity Disorder (ADHD) in children and alters auditory temporal processing in humans and animals. Serotonin has been implicated in auditory temporal processing and previous studies from our laboratory have demonstrated that developmental Pb decreases expression of serotonin (5-HT) in the adult murine lateral superior olive (LSO). During development, certain non-serotonergic sensory neurons, including auditory LSO neurons, transiently take up 5-HT through the serotonin reuptake transporter (SERT). The uptake of 5-HT is important for development of sensory systems. This study examines the effect of Pb on the serotonergic system in the LSO of the early postnatal mouse. Mice were exposed to moderate Pb (0.01mM) or high Pb (0.1mM) throughout gestation and postnatal day 4 (P4) and P8. We found that Pb exposure prolongs the normal developmental expression of 5-HT by LSO neurons and this is correlated with expression of SERT on LSO cell bodies. The prolonged expression of 5-HT by postnatal LSO neurons is correlated with decreased synaptic immunolabeling within the LSO. This Pb-associated decrease in synaptic density within the LSO could contribute to the auditory temporal processing deficits and cognitive deficits associated with developmental Pb exposure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5123977PMC
http://dx.doi.org/10.1016/j.neuro.2016.10.010DOI Listing

Publication Analysis

Top Keywords

lso neurons
16
auditory temporal
12
temporal processing
12
lso
9
exposure prolongs
8
uptake 5-ht
8
cognitive deficits
8
expression 5-ht
8
neurons correlated
8
5-ht
6

Similar Publications

When processing lucuma (), waste such as shells and seeds is generated, which is a source of bioactive compounds. Recently, lucuma seed (LS), especially its oily fraction, has been studied for containing phytosterols and tocopherols, powerful antioxidants with health benefits. This study proposes lucuma seed oil (LSO) extraction using supercritical fluid (SCF) to improve the quality of the extract and minimize the environmental impact.

View Article and Find Full Text PDF

Loss of C1q alters the auditory brainstem response.

Front Cell Neurosci

October 2024

Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, United States.

Neural circuits in the auditory brainstem compute interaural time and intensity differences used to determine the locations of sound sources. These circuits display features that are specialized for these functions. The projection from the ventral cochlear nucleus (VCN) to the medial nucleus of the trapezoid (MNTB) body travels along highly myelinated fibers and terminates in the calyx of Held.

View Article and Find Full Text PDF

Auditory space has been conceptualized as a matrix of systematically arranged combinations of binaural disparity cues that arise in the superior olivary complex (SOC). The computational code for interaural time and intensity differences utilizes excitatory and inhibitory projections that converge in the inferior colliculus (IC). The challenge is to determine the neural circuits underlying this convergence and to model how the binaural cues encode location.

View Article and Find Full Text PDF

Based on the auditory periphery and the small head size, Etruscan shrews (Suncus etruscus) approximate ancestral mammalian conditions. The auditory brainstem in this insectivore has not been investigated. Using labelling techniques, we assessed the structures of their superior olivary complex (SOC) and the nuclei of the lateral lemniscus (NLL).

View Article and Find Full Text PDF

Neurons of the lateral superior olive (LSO) in the auditory brainstem play a fundamental role in binaural sound localization. Previous theoretical studies developed various types of neuronal models to study the physiological functions of the LSO. These models were usually tuned to a small set of physiological data with specific aims in mind.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!