Application of propidium monoazide quantitative real-time PCR to quantify the viability of Lactobacillus delbrueckii ssp. bulgaricus.

J Dairy Sci

Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, P. R. China, 010018. Electronic address:

Published: December 2016

In this study, a combination of propidium monoazide (PMA) and quantitative real-time PCR (qPCR) was used to develop a method to determine the viability of cells of Lactobacillus delbrueckii ssp. bulgaricus ND02 (L. bulgaricus) that may have entered into a viable but nonculturable state. This can happen due to its susceptibility to cold shock during lyophilization and storage. Propidium monoazide concentration, PMA incubation time, and light exposure time were optimized to fully exploit the PMA-qPCR approach to accurately assess the total number of living L. bulgaricus ND02. Although PMA has little influence on living cells, when concentrations of PMA were higher than 30μg/mL the number of PCR-positive living bacteria decreased from 10 to 10 cfu/mL in comparison with qPCR enumeration. Mixtures of living and dead cells were used as method verification samples for enumeration by PMA-qPCR, demonstrating that this method was feasible and effective for distinguishing living cells of L. bulgaricus when mixed with a known number of dead cells. We suggest that several conditions need to be studied further before PMA-qPCR methods can be accurately used to distinguish living from dead cells for enumeration under more realistic sampling situations. However, this research provides a rapid way to enumerate living cells of L. bulgaricus and could be used to optimize selection of cryoprotectants in the lyophilization process and develop technologies for high cell density cultivation and optimal freeze-drying processes.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2016-11597DOI Listing

Publication Analysis

Top Keywords

propidium monoazide
12
living cells
12
dead cells
12
quantitative real-time
8
real-time pcr
8
lactobacillus delbrueckii
8
delbrueckii ssp
8
ssp bulgaricus
8
bulgaricus nd02
8
living dead
8

Similar Publications

Propidium Monoazide is Unreliable for Quantitative Live-Dead Molecular Assays.

Anal Chem

January 2025

Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, United States.

Propidium monoazide (PMA) is a dye that distinguishes between live and dead cells in molecular assays like the Polymerase Chain Reaction (PCR). It works by cross-linking to the DNA of cells that have compromised membranes or extracellular DNA upon photoactivation, making the DNA inaccessible for amplification. Currently, PMA is used to detect viable pathogens and alleviate systemic bias in the microbiome analysis of samples using 16S rRNA gene sequencing.

View Article and Find Full Text PDF

Enhanced Detection of Viable O157:H7 in Romaine Lettuce Wash Water Using On-Filter Propidium Monoazide-Quantitative PCR.

Microorganisms

December 2024

Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, MD 20742, USA.

Accurate detection of viable O157:H7 in fresh produce wash water is critical for ensuring food safety and mitigating foodborne illnesses. This study evaluated an optimized on-filter propidium monoazide (PMA)-quantitative PCR (qPCR) method for detecting viable O157:H7 in romaine lettuce wash water, involving PMA pretreatment on a filter to block DNA amplification from dead cells. The method consistently detected viable cells across chemical oxygen demand (COD) levels of 1000 and 200 mg O/L, with no significant differences ( > 0.

View Article and Find Full Text PDF

Prolonged storage reduces viability of and core intestinal bacteria in fecal microbiota transplantation preparations for dogs.

Front Microbiol

January 2025

Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States.

Introduction: Fecal microbiota transplantation (FMT) has been described useful as an adjunct treatment for chronic enteropathy in dogs. Different protocols can be used to prepare and store FMT preparations, however, the effect of these methods on microbial viability is unknown. We aimed (1) to assess the viability of several core intestinal bacterial species by qPCR and (2) to assess () viability through culture to further characterize bacterial viability in different protocols for FMT preparations.

View Article and Find Full Text PDF

Understanding the viability of ingested probiotics within the gastrointestinal tract is essential for evaluating their efficacy and deciphering their mechanisms of action. Detecting Bifidobacterium longum subspecies longum BB536 is particularly challenging owing to its indistinguishability from the naturally abundant B. longum species in the human gut.

View Article and Find Full Text PDF

Objectives: Chlamydia trachomatis (CT) is the most commonly reported bacterial sexually transmitted infection worldwide. Diagnosis relies on nucleic acid amplification techniques, such as PCR, which does not distinguish between viable pathogens and residual bacterial DNA, leading to potential overdiagnosis and overtreatment. PCR with confirmation of pathogen viability has not been widely explored in the sexually transmitted infection field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!