A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanoscale upconversion for oxygen sensing. | LitMetric

Nanoscale upconversion for oxygen sensing.

Mater Sci Eng C Mater Biol Appl

Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA. Electronic address:

Published: January 2017

Optical oxygen sensors have many promising qualities but rely on excitation by violet or blue wavelengths that suffer from high levels of scattering and absorption in biological tissues. Here we demonstrate an alternative method using 980nm near-infrared light to initially stimulate ceramic upconverting nanoparticles (UCNPs) contained within a novel form, electrospun core-shell fibers. The emission of the UCNPs excites a molecular optical oxygen sensor, the subsequent phosphorescent emission being dynamically quenched by the presence of molecular oxygen. The potential for use of such an energy transfer within electrospun fibers widely used in biological applications is promising. However, current knowledge of such 'handshake' interactions is limited. Fiber-based carriers enabling such optical conversions provide unique opportunities for biosensing as they recapitulate the topography of the extracellular matrix. This creates a wide array of potential theranostic, fiber-based applications in disease diagnosis/imaging, drug delivery and monitoring of therapeutic response. Using a fiber-based vehicle, we observed gaseous oxygen sensing capabilities and a linear Stern-Volmer response allowing highly accurate calibration. Configurational aspects were also studied to determine how to maximize the efficiency of this 'handshake' interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2016.08.056DOI Listing

Publication Analysis

Top Keywords

oxygen sensing
8
optical oxygen
8
oxygen
5
nanoscale upconversion
4
upconversion oxygen
4
sensing optical
4
oxygen sensors
4
sensors promising
4
promising qualities
4
qualities rely
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!