The development of growth factors is very promising in the field of tissue regeneration but specifically designed formulations have to be developed in order to enable such new biological entities (NBEs). In particular, the range of therapeutic concentrations is usually very low compared to other active proteins and the confinement in the target site can be of crucial importance. In-situ forming scaffolds are very promising solutions for minimally invasive intervention in cartilage reconstruction and targeting of NBEs. In this work injectable, in-situ forming gels of a temperature responsive partially degalactosylated xyloglucan (Deg-XG) incorporating the growth factor FGF-18 are formulated and characterized. In particular, injectability and shear viscosity at room temperature, time-to-gel at body temperature, morphology and mechanical properties of gels are investigated. The highly hydrophobic growth factor is favorably incorporated and retained by the gel. Gels undergo a slow erosion process when immersed in PBS at 37°C that opens up their porous structure. The prolonged hydrothermal treatment leads to structural rearrangements towards tougher networks with increased dynamic shear modulus. Preliminary biological evaluations confirm absence of cytotoxicity and the ability of these scaffolds to host cells and promote their proliferation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2016.09.045 | DOI Listing |
Biomaterials
January 2025
Department of Pharmacy of Puning People's Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangdong, 510632, China. Electronic address:
Developing translational nanoradiosensitizers with multiple activities in sensitizing tumor cells and re-shaping tumor immunosuppressive microenvironments are urgently desired for addressing the poor therapeutic efficacy of radiotherapy in clinic. Inspired by the anaerobic and immunoagonist properties of the probiotic (bifidobacterium longum, BL), herein, a biomimetic Selenium nanoradiosensitizer in situ-formed on the surface of the probiotic (BL@SeNPs) is developed in a facile method to potentiate radiotherapy. BL@SeNPs selectively target to hypoxia regions of tumors and then anchor on the surface of tumor cells to inhibit its proliferation.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China. Electronic address:
The electrical conductivity and antibacterial properties are crucial characteristics for bacterial cellulose (BC) based membranes to be broadly applied in the field of wearable electronics. In the study, to achieve these aims, alpha-lipoic acid (LA) was utilized as anchoring groups and reducing agent, hydroxypropyl-β-cyclodextrin (HP-β-CD) capped magnetic particles (FeO NPs) and the in-situ formed silver nanoparticles (AgNPs) were sequentially incorporated into the BC matrix to fabricate BC based nanocomposite membranes (HP-β-CD/FeO/LA@BC and HP-β-CD/FeO/LA/Ag@BC). Fourier transform attenuated total reflectance infrared spectroscopy (FTIR-ATR) and field emission scanning electron microscopy (FE-SEM) analysis proved the dense networks were formed in the modified BC membranes.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Mineral Processing Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
To realize the comprehensive utilization of large amounts of high-ash coal slime and comprehensively understand the excellent performance of nutrient release and lead and cadmium adsorption of high-ash coal slime silicon composite materials, green and safe mild hydrothermal conditions (200 °C) were used to prepare the rich-rich coal slime. Zeolite/tobermorite composites (Z-TOBs) were used in this study. Batch adsorption tests and repeated extraction tests were used to determine whether silicon, potassium, and calcium nutrients of Z-TOBs have sustained release properties and are affected by pH.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University (GXU), 100 Daxuedong Road, Xixiangtang District, Nanning 530004 China. Electronic address:
Porous carbons with large surface area (>3000 m/g) and heteroatom dopants have shown great promise as electrode materials for zinc ion hybrid capacitors. Centralized mesopores are effective to accelerate kinetics, and edge nitrogen can efficiently enhance pseudocapacitive capability. It is a great challenge to engineer centralized mesopores and edge nitrogen in large-surface-area porous carbons.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
Coordinatively unsaturated copper (Cu) has been demonstrated to be effective for electrifying CO reduction into C products by adjusting the coupling of C-C intermediates. Nevertheless, the intuitive impacts of ultralow coordination Cu sites on C products are scarcely elucidated due to the lack of synthetic recipes for Cu with low coordination numbers and its vulnerability to aggregation under reductive potentials. Herein, computational predictions revealed that Cu sites with higher levels of coordinative unsaturation favored the adsorption of C and C intermediates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!