Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Balanced steady-state free precession (bSSFP) sequences can provide superior signal-to-noise ratio efficiency for hyperpolarized (HP) carbon-13 ( C) magnetic resonance imaging by efficiently utilizing the nonrecoverable magnetization, but managing their spectral response is challenging in the context of metabolic imaging. A new spectrally selective bSSFP sequence was developed for fast imaging of multiple HP C metabolites with high spatiotemporal resolution.
Theory And Methods: This novel approach for bSSFP spectral selectivity incorporates optimized short-duration spectrally selective radiofrequency pulses within a bSSFP pulse train and a carefully chosen repetition time to avoid banding artifacts.
Results: The sequence enabled subsecond 3D dynamic spectrally selective imaging of C metabolites of copolarized [1- C]pyruvate and [ C]urea at 2-mm isotropic resolution, with excellent spectral selectivity (∼100:1). The sequence was successfully tested in phantom studies and in vivo studies with normal mice.
Conclusion: This sequence is expected to benefit applications requiring dynamic volumetric imaging of metabolically active C compounds at high spatiotemporal resolution, including preclinical studies at high field and, potentially, clinical studies. Magn Reson Med 78:963-975, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5400740 | PMC |
http://dx.doi.org/10.1002/mrm.26480 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!