Unlabelled: Although a number of natural materials have been used as hemostatic agents, many substances do not act quickly enough. Here, we created a novel dressings using collagen and chitosan with recombinant batroxobin (r-Bat) to promote faster and more effective hemostasis. We hypothesized that r-Bat would promote synergetic blood coagulation because it contains a blood coagulation active site different than those of collagen and chitosan. Our results suggest that each substances can maintain hemostatic properties while in the mixed dressings and that our novel hemostatic dressings promotes potent control of bleeding, as demonstrated by a whole blood assay and rat hemorrhage model. In a rat femoral artery model, the scaffold with a high r-Bat concentration more rapidly controlled excessive bleeding. This novel dressings has enormous possible for rapidly controlling bleeding and it improves upon the effect of collagen and chitosan used alone. Our novel r-Bat dressings is a possible candidate for improving preoperative care and displays promising properties as an absorbable agent in hemostasis.
Statement Of Significance: Despite the excellent hemostatic properties of collagen and chitosan pads, they reported to brittle behavior and lack sufficient hemostatic effect within relevant time. Therefore, we created a novel pad using collagen and chitosan with recombinant batroxobin (r-Bat). r-Bat acts as a thrombin-like enzyme in the coagulation cascade. Specifically, r-Bat, in contrast to thrombin, only splits fibrinopeptide A off and does not influence other hemostatic factors or cells, which makes it clinically useful as a stable hemostatic agent. Also the materials in the pad have synergetic effect because they have different hemostatic mechanisms in the coagulation cascade. This report propose the novel hemostatic pad isreasonable that a great potential for excessive bleeding injury and improve effects of natural substance hemostatic pad.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2016.10.024 | DOI Listing |
Carbohydr Polym
March 2025
Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China. Electronic address:
Ultraviolet B (UVB) irradiation from sunlight is one of the primary environmental factors that causes photodamage to the skin. The aim of this study was to prepare succinyl-chitosan oligosaccharide (SU-COS) and evaluate its protective effects and related molecular mechanisms against UVB-induced photodamage for the first time. SU-COS (substitution degree: 69.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan; International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan. Electronic address:
Severe traumatic bleeding and chronic diabetic wounds require rapid hemostasis and multifunctional dressings, which remain particularly challenging, especially for non-compressible trauma and irregular wounds with dysregulated microenvironments. Chitosan (CS) can be easily cross-linked with genipin to form GpCS hydrogels. However, developing injectable GpCS hydrogels for biomedical applications faces challenges, particularly in enhancing rapid gel formation and optimizing physical properties.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Biotechnology Center, The Silesian University of Technology, 44-100 Gliwice, Poland.
Biomimetic natural biomaterial (BNBM) nanocomposite scaffolds for bone replacement can reduce the rate of implant failure and the associated risks of post-surgical complications for patients. Traditional bone implants, like allografts, and autografts, have limitations, such as donor site morbidity and potential patient inflammation. Over two million bone transplant procedures are performed yearly, and success varies depending on the material used.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Pharmacy, Qingdao University, Qingdao 266071, China. Electronic address:
Complex wound closure scenarios necessitate the development of advanced wound dressings that can effectively address the challenges of filling irregularly shaped wounds and managing fatigue failures encountered in daily patient activities. To tackle these issues, we develop a multifunctional hydrogel from natural polysaccharides and polypeptides with injectability and self-healing properties for promoting full-time and multipurpose wound healing. Synthesized through dynamic Schiff base linkages between oxidized hyaluronic acid (OHA), ε-polylysine (ε-PL), and quaternized chitosan (QCS), the OHA/ε-PL/QCS hydrogel can gel rapidly within 50 s.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Orthopaedic Research Laboratory, Department of Orthopedic Surgery and Traumatology, Odense University Hospital & Department of Clinical Research, University of Southern Denmark, V18-812B-1, Etage 1, Bygning 45.4, Nyt Sund, SDU Campus 5230, Odense, Denmark.
There is an increasing demand for a suitable bone substitute to replace current clinical gold standard autografts or allografts. Majority of previous studies have focused on the early effects of substitutes on bone formation, while information on their long-term efficacies remains limited. This study investigated the efficacies of natural hydroxyapatite (nHA) derived from oyster shells and synthetic hydroxyapatite mixed with collagen (COL/HA) or chitosan (CS/HA) on bone regeneration and implant fixation in sheep.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!