Preparation, isolation and identification of non-conjugated C18:2 fatty acid isomers.

Chem Phys Lipids

Office of Regulatory Science, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, 5100 Paint Branch Pkwy, HFS-715, College Park, MD 20740, USA. Electronic address:

Published: December 2016

Non-conjugated geometric/positional isomers of linoleic acid (c9,c12-18:2) are often present in processed foods and oils. The following work presents a simple addition/elimination reaction for preparation of non-conjugated 18:2 fatty acid isomers. A mixture containing positional and geometric isomers of C18:2 fatty acids was produced by addition of hydrobromic acid to the fatty acid double bonds, followed by its elimination with a strong sterically hindered base. Pure 8,12-, 8,13-, 9,12-, and 9,13-18:2 fatty acid methyl esters were isolated from the synthetic mixture by a combination of sub-ambient RP-HPLC and Ag-HPLC. The determination of the double bond position was achieved by GC-MS using picolinyl esters derivatives. The determination of the fatty acid double bond geometric configuration was obtained by partial hydrogenation of the isolated isomer with hydrazine, followed by the GC-FID analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemphyslip.2016.10.003DOI Listing

Publication Analysis

Top Keywords

fatty acid
20
c182 fatty
8
acid isomers
8
acid double
8
double bond
8
acid
7
fatty
6
preparation isolation
4
isolation identification
4
identification non-conjugated
4

Similar Publications

Lipases, enzymes that perform the hydrolysis of triglycerides into fatty acids and glycerol, present a potential paradigm shift in the realms of food and detergent industries. Their enhanced efficiency, energy conservation and environmentally friendly attributes make them promising substitutes for chemical catalysts. Motivated by this prospect, this present study was targeted on the heterologous expression of a lipase gene, employing E.

View Article and Find Full Text PDF

Biochemical study and digestion profile of olive oil by LipBK: Revealing the potential applications of a new acid/broad thermal range true lipase.

Int J Biol Macromol

January 2025

Department of Agricultural and Environmental Biotechnology, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil; Institute of Bioenergy Research (IPBEN), Jaboticabal, São Paulo, Brazil. Electronic address:

This study characterized a novel bacterial lipase with high biotechnological potential, focusing on industrial and environmental applications. Bacterial isolates were screened using olive oil as a substrate, and the strain with the highest hydrolytic halo was identified as Burkholderia sp. via 16S rRNA analysis.

View Article and Find Full Text PDF

is a putative producer of polyunsaturated fatty acids in the gut soil of the composting earthworm .

Appl Environ Microbiol

January 2025

Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.

Polyunsaturated fatty acids (PUFAs) play a crucial role in aiding bacteria to adapt to extreme and stressful environments. While there is a well-established understanding of their production, accrual, and transfer within marine ecosystems, knowledge about terrestrial environments remains limited. Investigation of the intestinal microbiome of earthworms has illuminated the presence of PUFAs presumably of microbial origin, which contrasts with the surrounding soil.

View Article and Find Full Text PDF

Thyromimetics and MASLD: Unveiling the Novel Molecules Beyond Resmetirom.

J Gastroenterol Hepatol

January 2025

Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India.

Background: Resmetirom, the first FDA-approved drug for nonalcoholic steatohepatitis (NASH) with fibrosis in obese patients, when combined with lifestyle modifications, improves NASH resolution and reduces fibrosis by at least one stage. Low thyroid hormone (T) levels are linked to a higher risk of developing metabolic dysfunction-associated steatotic liver disease (MASLD). Epidemiological studies have confirmed the positive correlation between hypothyroidism and MASLD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!