Clozapine (Clz) and olanzapine (Olz) are second generation (atypical) antipsychotics, used widely for treating schizophrenia and bipolar disorder. These drugs share multiple sites of actions, however their mechanisms remain incompletely understood. Here, we analyzed the effects of these drugs on primary cultures of rat cortical astrocytes and C6 glioma cells using fura-2-based Ca imaging. C6 cells, but not cortical astrocytes, express the serotonin 2A receptor subtype, which couples to phospholipase C. Clz (1μM) significantly blocked serotonin-induced Ca transients in C6 cells, consistent with known antagonistic actions of Clz. Interestingly, at higher concentrations (>10μM), Clz but not Olz increased intracellular Ca concentrations in both cortical astrocytes and C6 cells. This Clz-induced Ca increase was concentration-dependent and completely blocked by removal of extracellular Ca using ethylene glycol tetraacetic acid (EGTA). Furthermore, 2-aminoethyl diphenylborinate or SKF-96365, blockers for store-operated Ca channels, significantly inhibited the Clz-induced Ca increase. Therefore, we analyzed the effects of Clz and Olz during Ca re-entry through store-operated Ca channels, which was maximized following depletion of internal Ca stores by thapsigargin and EGTA. The results demonstrated that Clz decreased Ca re-entry through store-operated Ca channels in cortical astrocytes and C6 cells whereas Olz failed to modulate the Ca re-entry. These results suggest Clz-specific bimodal actions via store-operated Ca channels in astrocytic cells. Since intracellular Ca homeostasis in astrocytes is an important determinant for neighboring synaptic signal transmission, our results may explain Clz-specific adverse effects or differential actions between Clz and Olz reported in the treatment of psychiatric disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2016.10.027 | DOI Listing |
BMC Med
January 2025
Physiological Institute, University of Regensburg, University Street 31, 93053, Regensburg, Germany.
Background: Dystonia is a common neurological hyperkinetic movement disorder that can be caused by mutations in anoctamin 3 (ANO3, TMEM16C), a phospholipid scramblase and ion channel. We previously reported patients that were heterozygous for the ANO3 variants S651N, V561L, A599D and S651N, which cause dystonia by unknown mechanisms.
Methods: We applied electrophysiology, Ca measurements and cell biological methods to analyze the molecular mechanisms that lead to aberrant intracellular Ca signals and defective activation of K channels in patients heterozygous for the ANO3 variants.
Am J Physiol Cell Physiol
January 2025
Department of Physiology (Cellular Physiology Research Group),Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, 10003-Caceres, Spain.
Filamin A (FLNA) is an actin-binding protein that has been reported to interact with STIM1 modulating the activation of Orai1 channels. Cleaving of FLNA by calpain leads to a C-terminal fragment that is involved in a variety of functional and pathological events, including pro-oncogenic activity in different types of cancer. Here we show that full-length FLNA is downregulated in samples from colon cancer patients as well as in the adenocarcinoma cell line HT-29.
View Article and Find Full Text PDFSci Transl Med
December 2024
Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA.
Sjögren's disease (SjD) is an autoimmune disorder characterized by progressive salivary and lacrimal gland dysfunction, inflammation, and destruction, as well as extraglandular manifestations. SjD is associated with autoreactive B and T cells, but its pathophysiology remains incompletely understood. Abnormalities in regulatory T (T) cells occur in several autoimmune diseases, but their role in SjD is ambiguous.
View Article and Find Full Text PDFUnlabelled: Endothelial-to-mesenchymal transition (EndMT) is a biological process that converts endothelial cells to mesenchymal cells with increased proliferative and migrative abilities. EndMT has been implicated in the development of pulmonary vascular remodeling in pulmonary arterial hypertension (PAH), a fatal and progressive lung vascular disease. Transforming growth factor β (TGF-β ), an inflammatory cytokine, is known to induce EndMT in many types of endothelial cells including lung vascular endothelial cells (LVEC).
View Article and Find Full Text PDFContact (Thousand Oaks)
December 2024
Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Fibrosis is a pathological condition characterized by excessive tissue deposition of extracellular matrix (ECM) components, leading to scarring and impaired function across multiple organ systems. This complex process is mediated by a dynamic interplay between cell types, including myofibroblasts, fibroblasts, immune cells, epithelial cells, and endothelial cells, each contributing distinctively through various signaling pathways. Critical to the regulatory mechanisms involved in fibrosis is store-operated calcium entry (SOCE), a calcium entry pathway into the cytosol active at the endoplasmic reticulum-plasma membrane contact sites and common to all cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!