From the outset, it was apparent that developing new therapies with mesenchymal stem/stromal cells (MSCs) was not a simple or easy task. Among the earliest experiments was administration of MSCs from normal mice to transgenic mice that developed brittle bones because they expressed a mutated gene for type 1 collagen isolated from a patient with osteogenesis imperfecta. The results prompted a clinical trial of MSCs in patients with severe osteogenesis imperfecta. Subsequent work by large numbers of scientists and clinicians has established that, with minor exceptions, MSCs do not engraft or differentiate to a large extent in vivo. Instead the cells produce beneficial effects in a large number of animal models and some clinical trials by secreting paracrine factors and extracellular vesicles in a "hit and run" scenario. The field faces a number of challenges, but the results indicate that we are on the way to effective therapies for millions of patients who suffer from devastating diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5154828 | PMC |
http://dx.doi.org/10.1016/j.jcyt.2016.09.008 | DOI Listing |
Cancer Res
January 2025
Swiss Federal Institute of technology in Lausanne, Lausanne, Vaud, Switzerland.
A recent publication by Bornes and colleagues explored the impact of the estrous cycle on mammary tumor response to neoadjuvant chemotherapy (NAC). Using genetically engineered mouse models, Bornes and colleagues revealed that chemotherapy is less effective when initiated during the diestrus stage compared to during the estrus stage. A number of changes during diestrous were identified that may reduce chemosensitivity of mammary tumors: an increased mesenchymal state of breast cancer cells during diestrous, decreased blood vessel diameters, and higher numbers of macrophages in the tumor microenvironment.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University;
Umbilical cord-derived mesenchymal stromal/stem cells (UC-MSCs) present low immunogenicity and potent immunomodulatory effects for treating various diseases. Human UC-MSCs are a heterogeneous population consisting of three main subpopulations with different cell shapes, proliferation rates, differentiation abilities, and immune regulatory functions. Previously, BAMBIMFGE8 UC-MSCs, the first subgroup successfully isolated from UC-MSCs were found to fail to alleviate lupus nephritis.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
January 2025
Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
Purpose: Growing evidence suggests that the tyrosine phosphatase SHP2 is pivotal for tumor progression. Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer, characterized by its high recurrence rate, aggressive metastasis, and resistance to chemotherapy. Understanding the mechanisms of tumorigenesis and the underlying molecular pathways in TNBC could aid in identifying new therapeutic targets.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
Nonunion is a significant complication in fracture management for surgeons. Salvianolic acid A (SAA), derived from the traditional Chinese plant Salviae miltiorrhizae Bunge (Danshen), exhibits notable anti-inflammatory and antioxidant properties. Although studies have demonstrated its ability to promote osteogenic differentiation, the exact mechanism of action remains unclear.
View Article and Find Full Text PDFAdv Wound Care (New Rochelle)
January 2025
Translational Medicine Center, Baotou Central Hospital (Baotou Clinical Medical College, Affiliated to Inner Mongolia Medical University), Baotou, China.
Wound healing is a dynamic process involving multiple cell types and signaling pathways. Dermal sheath cells (DSCs), residing surrounding hair follicles, play a critical role in tissue repair, yet their regulatory mechanisms remain unclear. This study used single-cell proteomics with the mouse model to explore DSC function across different healing stages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!