Fluoroscopic imaging has become increasingly popular to investigate total knee arthroplasty kinematics non-invasively - 3D implant models are aligned with 2D image projections, and optimized via an edge-contour alignment technique. Previous studies have quantified the accuracy of this approach, however they do not always adequately address the impact of image collection parameters. A particularly sensitive parameter is the pulse width, or exposure time per frame. At longer pulse widths, more motion is captured in a single frame; this can lead to image blur and subsequent degradation to image edge quality. Therefore, the comparative accuracy of relative joint kinematics as a function of pulse width and joint velocity needs to be defined. A limits of agreement approach was taken to define the mean differences between optoelectric kinematic measures (gold standard) and fluoroscopic methods at various pulse widths (1, 8 and 16ms) and knee velocities (50, 100 and 225°/s). The mean absolute differences between the optoelectric and fluoroscopic methods for 1ms pulse width were less than 1.5° and 0.9mm. Comparable rotational differences (1.3°) were observed for the 8ms pulse width but had larger translational differences (1.4mm). The 16ms pulse width yielded the greatest mean differences (2.0° and 1.6mm), which increased with knee flexion velocity. The importance of pulse width and velocity should not be overlooked for future studies - this parameter has proven to be a sensitive metric in the quantification of joint motion via fluoroscopy and must be identified and reported in future studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5242255 | PMC |
http://dx.doi.org/10.1016/j.jbiomech.2016.09.044 | DOI Listing |
ACS Nano
January 2025
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
Bismuth oxyselenide (BiOSe) stands as a highly promising layered semiconductor with outstanding optical, electrical, and thermal properties. For the practical application of the material toward the devices, growing BiOSe directly on the amorphous substrate at low temperatures (<400 °C) is essential; however, the negatively charged bottom Se layer originating from alternating stacks of Se and [BiO] has hindered this process. In this work, we report the method for synthesizing a BiOSe film on amorphous alumina (AlO) directly at 350 °C by using chemical solution deposition.
View Article and Find Full Text PDFJ Biomed Opt
February 2025
University of Wisconsin-Madison, Department of Medical Physics, Madison, Wisconsin, United States.
Significance: Protoporphyrin IX (PpIX) delayed fluorescence (DF) is inversely related to the oxygen present in tissues and has potential as a novel biomarker for surgical guidance and real-time tissue metabolism assessment. Despite the unique promise of this technique, its successful clinical translation is limited by the low intensity emitted.
Aim: We developed a systematic study of ways to increase the PpIX DF signal through acquisition sampling changes, allowing optimized imaging at video rates.
In this paper, we demonstrate a high-contrast front-end laser system based on Yb: YAG solid-state laser for Ti: sapphire terminal amplification. An ultrafast Yb: YAG solid-state laser is used to generate a broad-spectrum seed through white light generation (WLG), and then the signal light near 1600 nm is amplified by three-level colinear optical parametric chirped pulse amplification (OPCPA). Finally, a fs second harmonic generation (SHG) is used to obtain a laser output with a central wavelength of 795 nm, a pulse width of 40.
View Article and Find Full Text PDFIn this paper, a high-power UV-pumped BBO optical parametric oscillator (OPO) is presented by increasing the working temperature of the nonlinear crystal to fasten the color center recovery speed and further decrease the color center density. When the working temperature of the BBO crystal was experimentally increased from 135 °C to 185 °C, the output power was scaled up from 1.20 W to 2.
View Article and Find Full Text PDFHigh-resolution optical diagnostics in the short wavelength infrared (SWIR II) region have gained significant attention in medical research, showing great potential for tissue spectroscopy and visualization due to the region's low water absorption and scattering coefficients. However, high-beam-quality sources covering an entire spectral range are limited. This paper presents the development of a femtosecond Cr:ZnSe laser with a 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!