Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000417100 | DOI Listing |
Ophthalmic Physiol Opt
January 2025
School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia.
Purpose: To assess the repeatability of lipid layer thickness (LLT) measurement using the LipiView® interferometer after daily disposable contact lens (CL) wear and correlation with ocular comfort in soft contact lens wearers.
Methods: A prospective study was conducted over two consecutive months, wherein CL wearers (n = 20) wore either Somofilcon A or Verofilcon A daily disposable CLs in a crossover design, switching lenses after 1 month. The pre-corneal tear film LLT was measured at the end of each month after CLs had been worn for at least 6 h.
Importance: For myopia control to be beneficial, it would be important that the benefit of treatment (slowed eye growth) is not lost because of faster than normal growth (rebound) after discontinuing treatment.
Objective: To determine whether there is a loss of treatment effect (rebound) after discontinuing soft multifocal contact lenses in children with myopia.
Design, Setting, And Participants: The Bifocal Lenses in Nearsighted Kids 2 (BLINK2) cohort study involved children with myopia (aged 11-17 years at BLINK2 baseline) who completed the BLINK Study randomized clinical trial.
Soft Matter
January 2025
LENS (European Laboratory for Non-Linear Spectroscopy) Via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy.
Liquid Crystalline Networks (LCNs) are widely investigated to develop actuators, from soft robots to artificial muscles. Indeed, they can produce forces and movements in response to a plethora of external stimuli, showing kinetics up to the millisecond time-scale. One of the most explored preparation technique involves the photopolymerization of an aligned layer of reactive mesogens.
View Article and Find Full Text PDFSoft Matter
January 2025
Division of Physical Chemistry, Department of Chemistry, Lund University, PO Box 124, SE-221 00 Lund, Sweden.
Attempts to use colloid science concepts to better understand the dynamic properties of concentrated or crowded protein solutions are challenging due to the fact that globular proteins generally have heterogeneous surfaces that result in anisotropic or patchy contributions to their interaction potential. This is particularly difficult when targeting non-equilibrium transitions such as glass and gel formation in concentrated protein solutions. Here we report a systematic study of the reduced zero shear viscosity of the globular protein -crystallin, an eye lens protein that plays a vital role in vision-related phenomena such as cataract formation or presbyopia, and compare the results to the existing structural and dynamic data.
View Article and Find Full Text PDFStruct Dyn
January 2025
Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
Sub-ångström spatial resolution of electron density coupled with sub-femtosecond to few-femtosecond temporal resolution is required to directly observe the dynamics of the electronic structure of a molecule after photoinitiation or some other ultrafast perturbation, such as by soft X-rays. Meeting this challenge, pushing the field of quantum crystallography to attosecond timescales, would bring insights into how the electronic and nuclear degrees of freedom couple, enable the study of quantum coherences involved in molecular dynamics, and ultimately enable these dynamics to be controlled. Here, we propose to reach this realm by employing convergent-beam x-ray crystallography with high-power attosecond pulses from a hard-x-ray free-electron laser.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!