Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The specialization of human fat deposits is an inquiry of special importance in the study of fetal growth. It has been theorized that maternal lower-body fat is designated specifically for lactation and not for the growth of the fetus.
Objective: Our goal was to compare the contributions of maternal upper-body versus lower-body adiposity to infant birth weight. We hypothesized that upper-body adiposity would be strongly associated with infant birth weight and that lower-body adiposity would be weakly or negligibly associated with infant birth weight-after adjusting for known determinants.
Study Design: In this prospective cohort study, 355 women initiated medical pre-natal care during the first trimester of pregnancy at The University of Oklahoma Health Sciences Center during 1990-1993. Maternal anthropometric measurements were assessed at the first clinic visit: (a) height; (b) weight; (c) circumferences of the upper arm, forearm, and thigh; and, (d) skin-fold measurements of the bicep, subscapular region, and thigh.
Results: Infant birth weight was regressed on known major determinants to create the foundational model. Maternal anthropometric variables subsequently were added one at a time into this multiple regression model. The highest contribution by a single anthropometric variable to infant birthweight was, in order: subscapular skin-fold, forearm circumference, and thigh circumference. With one upper-body (subscapular skin-fold) and one lower-body (circumference of the thigh) adiposity measure in the model, the z-score regression coefficient (s.e.) was 85.7g (30.8) [p=0.0057] for maternal subscapular skin-fold and 19.0g (31.6) [p=0.5477] for circumference of the thigh. When the second-best upper-body contributor to infant birthweight (circumference of the forearm) was entered with one lower-body measure into the model, the z-score regression coefficient (s.e.) was 77.5g (38.5) [p=0.0451] for maternal forearm circumference and 14.1g (38.5) [p=0.7146] for circumference of the thigh. When both subscapular skinfold and forearm circumference were added to the model in place of BMI, the explained variance (r=0.5478) was similar to the model using BMI (r=0.5487).
Conclusion: Upper-body adiposity - whether operationalized by subscapular skin-fold or circumference of the forearm - was a markedly larger determinant of infant birth weight than lower-body adiposity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejogrb.2016.09.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!