The putative initial adduct of ferrous superoxide reductase (SOR) with superoxide has been alternatively formulated as ferric-peroxo or ferrous-superoxo. The ~600-nm UV-vis absorption band proposed to be assigned to this adduct (either as sole intermediate in the SOR catalytic cycle, or as one of the two intermediates) has recently been interpreted as due to a ligand-to-metal charge transfer, involving thiolate and superoxide in a ferrous complex, contrary to an alternative assignment as a predominantly cysteine thiolate-to-ferric charge transfer in a ferric-peroxo electromer. In an attempt to clarify the electromeric formulation of this adduct, we report a computational study using a multiconfigurational complete active space self-consistent field (MC-CASSCF) wave function approach as well as modelling the UV-vis absorption spectra with time-dependent density functional theory (TD-DFT). The MC-CASSCF calculations disclose a weak interaction between iron and the dioxygenic ligand and a dominant configuration with an essentially ferrous-superoxo character. The computed UV-vis absorption spectra reveal a marked dependence on the choice of density functional - both in terms of location of bands and in terms of orbital contributors. For the main band in the visible region, besides the recently reported thiolate-to-superoxide charge transfer, a more salient, and less functional-dependent, feature is a thiolate-to-ferric iron charge transfer, consistent with a ferric-peroxo electromer. By contrast, the computed UV-vis spectra of a ferric-hydroperoxo SOR model match distinctly better (and with no qualitative dependence on the DFT methodology) the 600-nm band as due to a mainly thiolate-to-ferric character - supporting the assignment of the SOR "600-nm intermediate" as a S=5/2 ferric-hydroperoxo species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2016.09.017DOI Listing

Publication Analysis

Top Keywords

uv-vis absorption
16
charge transfer
16
absorption spectra
12
electromeric formulation
8
adduct ferrous
8
ferrous superoxide
8
superoxide reductase
8
ferric-peroxo electromer
8
density functional
8
computed uv-vis
8

Similar Publications

Over the last decade, the environmental and wellness cost of antibiotic drug resistance to the societies have been astounding and require urgent attention Metal oxide nanomaterials have been achieved a pull-on deal with its entire applications in biological and photocatalytic applications. The present study conducts a comparative investigation on chemical and biogenic synthesis of zirconium dioxide (ZrO) nanoparticles aimed at enhancing their efficacy in their applications. The plant extract of Passiflora edulis act as a reducing and capping properties offering a sustainable and eco-friendly alternative.

View Article and Find Full Text PDF

New thiazole derivative as a potential anticancer and topoisomerase II inhibitor.

Sci Rep

January 2025

Chemistry Department, Faculty of Science, Damietta University, Damietta, New-Damietta, 34517, Egypt.

To shed light on the significance of thiazole derivatives in the advancement of cancer medication and to contribute to therapeutic innovation, we have designed the synthesis and antiproliferative activity investigation of 5-(1,3-dioxoisoindolin-2-yl)-7-(4-nitrophenyl)-2-thioxo-3,7-dihydro-2H-pyrano[2,3-d] thiazole-6-carbonitrile, the structure of thiazole derivative was confirmed by spectroscopic techniques UV, IR and NMR. The cytotoxic activity (in vitro) of the new hybrid synthesized compound on five human cancer cell lines; human liver hepatocellular carcinoma (HepG-2), colorectal carcinoma (HCT-116), breast adenocarcinoma (MCF-7), and epithelioid carcinoma (Hela), and a normal human lung fibroblast (WI-38) was studied using MTT assay. The compound exhibited a strong cytotoxicity effect against HepG-2 and MCF-7.

View Article and Find Full Text PDF

This study evaluates the deposition of diamond-like carbon (DLC) films with copper impurities on a glass substrate using simultaneous direct current (DC) and radio frequency (RF) magnetron sputtering. The structural, optical, electrical, and mechanical properties, as well as the surface topography of the films, were investigated under various DC power levels using Raman spectroscopy, ellipsometry, UV-VIS, I-V measurements, nanoindentation, AFM, and FESEM. Results indicate that increasing the DC power to the graphite target from 60 to 120 , while maintaining a constant 10  of RF power to the copper target, enhances the optical absorption coefficient of the films and increases the optical bandgap from 0.

View Article and Find Full Text PDF

Aims: This study focuses on the synthesis and characterization of novel sitagliptin derivatives, aiming to develop potent, orally active anti-diabetic agents with minimal side effects for the management of type 2 diabetes mellitus. Copper (II) (SCu1-SCu9) and zinc (II) (SZn1-SZn9) metal complexes of sitagliptin-based derivatives were synthesized via a template reaction.

Material & Method: The synthesized complexes were comprehensively characterized using elemental analysis, FTIR, UV-Vis, 1 h NMR, and 13C NMR spectroscopy.

View Article and Find Full Text PDF
Article Synopsis
  • Selective binding and optical sensing of Zn(II) and Cd(II) in water were studied using different receptors (L1, HL2, L3, HL4, HL5) to see how complex stability affects metal signaling.
  • The receptors all have a cyclic tetra-amine structure combined with either one or two quinoline or 8-hydroxyquinoline units, influencing their properties and interactions.
  • The study showed that Zn(II) forms more stable complexes with some receptors, while Cd(II) complexes benefit from better fitting in specific cavities, leading to unique optical behaviors for each metal in their respective complexes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!