Vitamin D is implicated in the etiology of cancers of the gastrointestinal tract, usually characterized by alteration in the APC/β-catenin/TCF tumor suppressor pathway. The vitamin D receptor (VDR) is also implicated in cardiovascular and skin diseases as well as in immunity. Activated VDR can indirectly alter β-catenin nuclear localization and directly suppress β-catenin/TCF mediated transcriptional activity. We treated VDR null mice with the carcinogen azoxymethane (AOM) and generated mice bearing a mutated APC (hypomorph) on a VDR null background (Apc1638N/+Vdr-/-). VDR null mice do not develop GI or extra-colonic tumors but loss of VDR decreased intestinal tumor latency and increased progression to adenocarcinoma in both models. AOM treatment of VDR null mice also caused squamous cell carcinoma of the anus. Although levels and distribution of total or activated β-catenin in the epithelial component of tumors were unaffected by loss of VDR, β-catenin dependent cyclin D1 expression was affected suggesting a direct VDR effect on β-catenin co-activator activity. Extra-colonic mucosa manifestations in Apc1638N/+Vdr-/- animals included increased nuclear β-catenin in submucosal stromal cells, spleno- and cardiomegaly and large epidermoid cysts characteristic of the FAP variant, Gardner's syndrome. Consistent with this, SNPs in the VDR, vitamin D binding protein and CYP24 as well as mutations in APC distal to codon 850 were strongly associated with Gardners syndrome in a cohort of 457 FAP patients, This work suggests that alterations in the vitamin D/VDR axis are important in Gardner's syndrome, as well as in the etiology of anal cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5348337PMC
http://dx.doi.org/10.18632/oncotarget.12768DOI Listing

Publication Analysis

Top Keywords

vdr null
16
null mice
12
vdr
10
loss vdr
8
vdr β-catenin
8
gardner's syndrome
8
β-catenin
5
role vitamin
4
vitamin pathway
4
pathway non-intestinal
4

Similar Publications

Vitamin D Receptor Regulates Liver Regeneration After Partial Hepatectomy in Male Mice.

Endocrinology

July 2024

The Centre for Diabetes, Obesity and Endocrinology Research (CDOER), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia.

Vitamin D signals through the vitamin D receptor (VDR) to induce its end-organ effects. Hepatic stellate cells control development of liver fibrosis in response to stressors and vitamin D signaling decreases fibrogenesis. VDR expression in hepatocytes is low in healthy liver, and the role of VDR in hepatocyte proliferation is unclear.

View Article and Find Full Text PDF

In the skeleton, osteoblasts and osteoclasts synchronize their activities to maintain bone homeostasis and integrity. Investigating the molecular mechanisms governing bone remodeling is critical and helps understand the underlying biology of bone disorders. Initially, we have identified the ubiquitin-specific peptidase gene (Usp53) as a target of the parathyroid hormone in osteoblasts and a regulator of mesenchymal stem cell differentiation.

View Article and Find Full Text PDF

Recovery from lactation-induced bone loss appears to be calcitriol-independent, since mice lacking 1-alpha-hydroxylase or vitamin D receptor (VDR) exhibit full skeletal recovery. However, in those studies mice consumed a calcium-, phosphorus-, and lactose-enriched "rescue" diet. Here we assessed whether postweaning skeletal recovery of Vdr null mice required that rescue diet.

View Article and Find Full Text PDF
Article Synopsis
  • VDR expression plays a role in metabolism and glucose homeostasis, particularly in pancreatic beta-cells.
  • Researchers studied VDR-null (VDRKO) mice at different ages to assess how the absence of VDR affects metabolic health.
  • Findings showed VDRKO mice had lower bone density and fat mass, but surprising effects on insulin sensitivity and glucose tolerance, especially differing between male and female mice.
View Article and Find Full Text PDF

Epidemiological observations have prompted some to posit that elevated circulating vitamin D is responsible for reduced colon cancer in individuals residing near the equator. We have previously demonstrated that vitamin D has no effect on colon cancer in two rodent models of intestinal tumorigenesis. We have now extended this line of inquiry to ask whether ablation of vitamin D receptor (VDR) affects tumorigenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!