According to heuristic arguments, global AdS_{5}×S^{5} black holes are expected to undergo a phase transition in the microcanonical ensemble. At high energies, one expects black holes that respect the symmetries of the S^{5}; at low energies, one expects "localized" black holes that appear pointlike on the S^{5}. According to anti-de Sitter/conformal field theory correspondence, N=4 supersymmetric Yang-Mills (SYM) theory on a 3-sphere should therefore exhibit spontaneous R-symmetry breaking at strong coupling. In this Letter, we numerically construct these localized black holes. We extrapolate the location of this phase transition, and compute the expectation value of the broken scalar operator with lowest conformal dimension. Via the correspondence, these results offer quantitative predictions for N=4 SYM theory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.117.151101 | DOI Listing |
Sci Rep
December 2024
Department of Physics, University of Trento, Via Sommarive 14, 38123, Povo (TN), Italy.
It has been argued that realistic models of (singularity-free) black holes (BHs) embedded within an expanding Universe are coupled to the large-scale cosmological dynamics, with striking consequences, including pure cosmological growth of BH masses. In this pilot study, we examine the consequences of this growth for the stochastic gravitational wave background (SGWB) produced by inspiraling supermassive cosmologically coupled BHs. We show that the predicted SGWB amplitude is enhanced relative to the standard uncoupled case, while maintaining the [Formula: see text] frequency scaling of the spectral energy density.
View Article and Find Full Text PDFSmall
December 2024
Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan, 411105, P. R. China.
Photocatalysis has garnered significant attention as a sustainable approach for energy conversion and environmental management. 2D black phosphorus (BP) has emerged as a highly promising semiconductor photocatalyst owing to its distinctive properties. However, inherent issues such as rapid recombination of photogenerated electrons and holes severely impede the photocatalytic efficacy of single BP.
View Article and Find Full Text PDFNature
December 2024
NRC Herzberg, Victoria British Columbia, Canada.
Recent observations have found a large number of supermassive black holes already in place in the first few hundred million years after the Big Bang, many of which seem to be overmassive relative to their host galaxy stellar mass when compared with local relation. Several different models have been proposed to explain these findings, ranging from heavy seeds to light seeds experiencing bursts of high accretion rate. Yet, current datasets are unable to differentiate between these various scenarios.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Via Marzolo 8, 35131 Padova, Italy.
Slow first-order phase transitions generate large inhomogeneities that can lead to the formation of primordial black holes. We show that the gravitational wave spectrum then consists of a primary component sourced by bubble collisions and a secondary one induced by large perturbations. The latter gives the dominant peak if β/H_{0}<12, impacting, in particular, the interpretation of the recent pulsar timing array data.
View Article and Find Full Text PDFBrachytherapy
December 2024
Department of Radiation Oncology, University of Washington, Seattle, WA.
Introduction: There is some evidence of a dose-response relationship for intravascular brachytherapy (IVBT) of native vessel or first-time in-stent restenosis (ISR). It has also been shown that in-field failure predominates following intravascular brachytherapy-treated lesions. Accordingly, it may be advantageous to increase the radiation dose(s) currently used.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!