ZnO is a prime candidate for future use in transparent electronics; however, development of practical materials requires attention to factors including control of its unusual surface band bending and surface reactivity. In this work, we have modified the O-polar (0001̅), Zn-polar (0001), and m-plane (101̅0) surfaces of ZnO with phosphonic acid (PA) derivatives and measured the effect on the surface band bending and surface sensitivity to atmospheric oxygen. Core level and valence band synchrotron X-ray photoemission spectroscopy was used to measure the surface band bending introduced by PA modifiers with substituents of opposite polarity dipole moment: octadecylphosphonic acid (ODPA) and 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctylphosphonic acid (FOPA). Both PAs act as surface electron donors, increasing the downward band bending and the strength of the two-dimensional surface electron accumulation layer on all of the ZnO surfaces investigated. On the O-polar (0001̅) and m-plane (101̅0) surfaces, the ODPA modifier produced the largest increase in downward band bending relative to the hydroxyl-terminated unmodified surface of 0.55 and 0.35 eV, respectively. On the Zn-polar (0001) face, the FOPA modifier gave the largest increase (by 0.50 eV) producing a total downward band bending of 1.00 eV, representing ∼30% of the ZnO band gap. Ultraviolet (UV) photoinduced surface wettability and photoconductivity measurements demonstrated that the PA modifiers are effective at decreasing the sensitivity of the surface toward atmospheric oxygen. Modification with PA derivatives produced a large increase in the persistence of UV-induced photoconductivity and a large reduction in UV-induced changes in surface wettability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b10309DOI Listing

Publication Analysis

Top Keywords

band bending
28
surface
12
surface band
12
downward band
12
surface reactivity
8
surfaces zno
8
zno phosphonic
8
phosphonic acid
8
band
8
bending surface
8

Similar Publications

Topological Insulators (TIs) are promising platforms for Quantum Technology due to their topologically protected surface states (TSS). Plasmonic excitations in TIs are especially interesting both as a method of characterisation for TI heterostructures, and as potential routes to couple optical and spin signals in low-loss devices. Since the electrical properties of the TI surface are critical, tuning TI surfaces is a vital step in developing TI structures that can be applied in real world plasmonic devices.

View Article and Find Full Text PDF

The direct discharge of cationic surfactants into environmental matrices has exponentially increased due to their wide application in many products. These compounds and their degraded products disrupt microbial dynamics, hinder plant survival, and affect human health. Therefore, there is an urgent need to develop electroanalytical assessment techniques for their identification, determination, and monitoring.

View Article and Find Full Text PDF

Organic photovoltaic materials typically exhibit low charge separation and transfer efficiency and severe exciton/carrier recombination due to high exciton binding energy and short exciton diffusion lengths, limiting the enhancement of photocatalytic hydrogen evolution performance. Here, we introduce a surface charge reversal strategy to regulate charge characters of organic photovoltaic catalyst (OPC). Compared to OPC nanoparticles (NPs) stabilized by anionic surfactant ((-) NPs), NPs stabilized by cationic surfactant ((+) NPs) exhibit a raised Fermi level, larger surface band bending and Schottky barrier, thereby enhancing charge separation and transfer efficiency while suppressing charge carrier recombination.

View Article and Find Full Text PDF
Article Synopsis
  • Plasmonic metasurfaces (PMs) are highlighted for their exceptional optical properties that are beneficial for advanced photovoltaic devices, with a focus on a new PM heterojunction involving a nanopore confinement effect in metal-organic frameworks (MOFs) combined with gold nanoparticles (AuNPs).
  • The unique porous structure of 2D MOFs allows for precise control over the synthesis of AuNPs, which optimizes the interface for enhanced localized surface plasmon resonance (LSPR) and photovoltaic responsiveness through work function alignment and Schottky barrier formation.
  • The study introduces a PMs-enhanced biosensor utilizing multifunctional peptides and MOF@UsAu for ultrasensitive direct analysis of tumor exosomes, marking a pioneering approach in
View Article and Find Full Text PDF

Purpose: The purpose of this study was to evaluate the biomechanical properties of SutureTape as an alternative technique for arthrodesis of the metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joint arthrodesis when compared with surgical steel wire.

Methods: A total of 32 fingers (index, long, ring, and small) from two matched pair cadaveric hands were used. K-wire and surgical steel wire were used for MCP and PIP joint arthrodesis of the control group (group I), whereas K-wire and SutureTape were used for the experimental group (group II).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!