Increasing attention has now been focused on the photoelectrochemical (PEC) hydrogen evolution as a promising route to transforming solar energy into chemical fuels. Silicon is one of the most studied PEC electrode materials, but its performance is still limited by its inherent PEC instability and electrochemical inertness toward water splitting. To achieve significant PEC activities, silicon-based photoelectrodes usually have to be coupled with proper cocatalysts, and thus, the formed semiconductor-cocatalyst interface presents a critical structural parameter in the rational design of efficient PEC devices. In this study, we directly grow nanostructured pyrite-phase nickel phosphide (NiP) cocatalyst films on textured pn-Si photocathodes via on-surface reaction at high temperatures. The areal loading of the cocatalyst film can be tailored to achieve an optimal balance between its optical transparency and electrocatalytic activity. As a result, our pn-Si/Ti/NiP photocathodes demonstrate a great PEC onset potential of 0.41 V versus reversible hydrogen electrode (RHE), a decent photocurrent density of ∼12 mA/cm at the thermodynamic potential of hydrogen evolution, and an impressive operation durability for at least 6 h in 0.5 M HSO. Comparable PEC performance is also observed in 1 M potassium borate buffer (pH = 9.5) using this device.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.6b11197 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
TCS Research, Sahyadri Park 2, Rajiv Gandhi Infotech Park, Hinjewadi Phase 3, Pune 411057, India.
Realization of a sustainable hydrogen economy in the future requires the development of efficient and cost-effective catalysts for its production at scale. MXenes (MX) are a class of 2D materials with 'n' layers of carbon or nitrogen (X) interleaved by 'n+1' layers of transition metal (M) and have emerged as promising materials for various applications including catalysts for hydrogen evolution reaction (HER). Their properties are intimately related to both their composition and their atomic structure.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Shenzhen University, Chemistry, Nanhai Ave 3688, 518060, Shenzhen, CHINA.
The high entropy alloy (HEA) possesses distinctive thermal stability and electronic characteristics, which exhibits substantial potential for diverse applications in electrocatalytic reactions. However, accurately controlling the size of HEA still remains a challenge, especially for the ultrasmall HEA nanoparticles. Herein, we firstly calculate and illustrate the size impact on the electronic structure of HEA and the adsorption energies of crucial intermediates in typical electrocatalytic reactions, such as the hydrogen evolution reaction (HER), oxygen reduction reaction (ORR), CO2 electroreduction (CO2RR) and NO3- electroreduction (NO3RR).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
University of Science and Technology of China, Hefei National Research Center for Physical Sciences at Microscale, jinzhai road, hefei, CHINA.
Herein, we first report a photocatalytic OCM using CO2 as a soft oxidant for C2H6 production under mild conditions, where an efficient photocatalyst with unique interface sites is constructed to facilitate CO2 adsorption and activation, while concurrently boosting CH4 dissociation. As a prototype, the Au quantum dots anchored on oxygen-deficient TiO2 nanosheets are fabricated, where the Au-Vo-Ti interface sites for CO2 adsorption and activation are collectively disclosed by in situ Kelvin probe force microscopy, quasi in situ X-ray photoelectron spectroscopy and theoretical calculations. Compared with single metal site, the Au-Vo-Ti interface sites exhibit the lower CO2 adsorption energy and decrease the energy barrier of the *CO2 hydrogenation step from 1.
View Article and Find Full Text PDFSci Rep
December 2024
Key Laboratory of Coalbed Methane Resource and Reservoir Formation Process, Ministry of Education, China University of Mining and Technology, Xuzhou, China.
This analysis revealed the alterations in the pore structure of large organic molecules in coal during the process of coal pyrolysis. Nine models of macromolecular structures in coals, representing distinct coal ranks, have been built. The research results show that along with the increasing coal rank, the average microporous volume of medium rank coal is 0.
View Article and Find Full Text PDFJ Funct Biomater
December 2024
CS-Surgical Sciences and Technologies-SS Omics Science Platform for Personalized Orthopedics, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
Magnesium and its alloys represent promising candidates for biomedical implants due to their biodegradability and mechanical properties, which are similar to natural bone. However, their rapid degradation process characterized by dynamic pH fluctuations and significant hydrogen gas evolution during biocorrosion adversely affects both in vitro and in vivo assessments. While the ISO 10993-5 and 12 standards provide guidelines for evaluating the in vitro biocompatibility of biodegradable materials, they also introduce testing variability conditions that yield inconsistent results.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!