Sweet Polymers: Poly(2-ethyl-2-oxazoline) Glycopolymers by Reductive Amination.

Biomacromolecules

Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium.

Published: December 2016

Carbohydrates are important in signaling, energy storage, and metabolism. Depending on their function, carbohydrates can be part of larger structures, such as glycoproteins, glycolipids, or other functionalities (glycoside). To this end, polymers can act as carriers of carbohydrates in so-called glycopolymers, which mimic the multivalent carbohydrate functionalities. We chose a biocompatible poly(2-ethyl-2-oxazoline) (PEtOx) as the basis for making glycopolymers. Via the partial hydrolysis of PEtOx, a copolymer of PEtOx and polyethylenimine (PEI) was obtained; the subsequent reductive amination with the linear forms of glucose and maltose yielded the glycopolymers. The ratios of PEtOx and carbohydrates were varied systematically, and the solution behaviors of the resulting glycoconjugates are discussed. Dynamic light scattering (DLS) revealed that, depending on the carbohydrate ratio, the glycopolymers were either fully water-soluble or formed agglomerates in a temperature-dependent manner. Finally, these polymers were tested for their biological availability by studying their lectin binding ability with Concanavalin A.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.6b01451DOI Listing

Publication Analysis

Top Keywords

reductive amination
8
glycopolymers
5
sweet polymers
4
polymers poly2-ethyl-2-oxazoline
4
poly2-ethyl-2-oxazoline glycopolymers
4
glycopolymers reductive
4
carbohydrates
4
amination carbohydrates
4
carbohydrates signaling
4
signaling energy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!