AI Article Synopsis

Article Abstract

La Crosse encephalitis is a viral disease that has emerged in new locations across the Appalachian region of the United States. Conventional wisdom suggests that ongoing emergence of La Crosse virus (LACV) could stem from the invasive Asian tiger (Aedes albopictus) mosquito. Efforts to prove this, however, are complicated by the numerous transmission routes and species interactions involved in LACV dynamics. To analyze LACV transmission by Asian tiger mosquitoes, we constructed epidemiologic models. These models accurately predict empirical infection rates. They do not, however, support the hypothesis that Asian tiger mosquitoes are responsible for the recent emergence of LACV at new foci. Consequently, we conclude that other factors, including different invasive mosquitoes, changes in climate variables, or changes in wildlife densities, should be considered as alternative explanations for recent increases in La Crosse encephalitis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5088026PMC
http://dx.doi.org/10.3201/eid2211.160308DOI Listing

Publication Analysis

Top Keywords

asian tiger
12
crosse virus
8
region united
8
united states
8
crosse encephalitis
8
tiger mosquitoes
8
epidemiology crosse
4
virus emergence
4
emergence appalachia
4
appalachia region
4

Similar Publications

Background: Mosquitoes, as vectors of various pathogens, have been a public health risk for centuries. Human activities such as international travel and trade, along with climate change, have facilitated the spread of invasive mosquitoes and novel pathogens across Europe, increasing the risk of mosquito-borne disease introduction and their spread. Despite this threat, mosquito control in Hungary still relies predominantly on chemical treatments, which poses the risk of developing insecticide resistance in local populations.

View Article and Find Full Text PDF

Background: (Skuse) is an invasive and widespread mosquito species that can transmit dengue, chikungunya, yellow fever, and Zika viruses. Its control heavily relies on the use of insecticides. However, the efficacy of the insecticide-based intervention is threatened by the increasing development of resistance to available insecticides.

View Article and Find Full Text PDF

Background: The risk of mosquito-borne disease transmission is increasing in temperate climates with the colonization and proliferation of the Asian tiger mosquito vector Aedes albopictus and the rapid mass transport of passengers returning from tropical regions where viruses are endemic. The prevention of major Aedes-borne viruses heavily relies on the use of insecticides for vector control, mainly pyrethroids. In Europe, only deltamethrin is authorized.

View Article and Find Full Text PDF

Aedes albopictus (Diptera: Culicidae), commonly known as the Asian tiger mosquito, is an important vector transmitting dangerous arboviruses to humans. This study investigated the phenotypic and genetic variation of this species in Thailand through wing geometric morphometric (GM) and mitochondrial cytochrome c oxidase subunit I (COI) gene sequence analyses. A total of 236 Ae.

View Article and Find Full Text PDF

We describe two new medium-bodied, nocturnal species of South Asian Cnemaspis from the southern Western Ghats, Tamil Nadu, India in an integrative taxonomic framework. The two new species are phylogenetically and morphologically allied to the wynadensis clade and can be distinguished from other species of the wynadensis clade and each other by a combination of nonoverlapping morphological characters including body size, homogeneous dorsal pholidosis, the number of femoral pores and poreless scales separating these series, the number of ventral scales across the midbody and longitudinal scales from mental to cloaca, the number of dorsal granules around the body; and an uncorrected pairwise ND2 sequence divergence of 8.2-22.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!