A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Directly Modifying the Nonbonded Potential Based on the Standard Iterative Boltzmann Inversion Method for Coarse-Grained Force Fields. | LitMetric

Directly Modifying the Nonbonded Potential Based on the Standard Iterative Boltzmann Inversion Method for Coarse-Grained Force Fields.

J Phys Chem B

National Key Laboratory of Science and Technology on Advanced Composites in Special Environment, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150001, People's Republic of China.

Published: November 2016

Effective potentials are of great importance for coarse-grained (CG) simulations, which can be obtained by the structure-based iterative Boltzmann inversion (IBI) method. However, the standard IBI method is incapable of maintaining the mechanical and thermodynamic properties of the CG model in agreement with those of the all-atom model. Unlike the existing techniques, such as introducing friction force as the dissipative force to reduce the superatom motion while keeping the conservative force arising from the CG potential intact, we directly modified the standard IBI nonbonded potential by adding an empirical function. According to an analysis of the dissipative particle dynamics, the additional function did compensate for the friction reduction of the standard IBI CG model. In this work, the thermal fluctuation information from the nonbonded radial distribution function was incorporated into the additional empirical function. As an illustration of the new CG force fields, we presented simulations of the stress-strain relation and thermodynamic properties in terms of cis-polyisoprene and compared the statistical structure information of the superatoms with those of the IBI CG model and the all-atom model. It should be emphasized that the additional empirical function contributed to compensating for the friction reduction, irrespective of the functional form it took. In this sense, the proposed method was easily operable.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.6b06457DOI Listing

Publication Analysis

Top Keywords

standard ibi
12
empirical function
12
nonbonded potential
8
iterative boltzmann
8
boltzmann inversion
8
force fields
8
ibi method
8
thermodynamic properties
8
all-atom model
8
friction reduction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!