CLN3 disease (Spielmeyer-Vogt-Sjogren-Batten disease, previously known as classic juvenile neuronal ceroid lipofuscinosis, NCL) is a pediatric-onset progressive neurodegenerative disease characterized by progressive vision loss, seizures, loss of cognitive and motor function, and early death. While no precise biochemical mechanism or therapies are known, the pathogenesis of CLN3 disease involves intracellular calcium accumulation that may trigger apoptosis. Our prior work in in vitro cell models of CLN3 deficiency suggested that FDA-approved calcium channel antagonists may have therapeutic value. To further evaluate the potential efficacy of this approach in an otherwise untreatable disorder, we sought to compare the therapeutic effects and underlying mechanisms in an animal model of CLN3 disease. Here, we used the well-characterized XT7 complete cln-3 knockout strain of C. elegans to evaluate the therapeutic efficacy of calcium channel antagonist therapy in a living animal model of Batten disease. Therapeutic effects of five calcium channel antagonists were evaluated on XT7 animal lifespan and in vivo mitochondrial physiology. Remarkably, maximal therapeutic efficacy in this model animal was observed with 1 μM flunarizine, the identical concentration previously identified in cell-based neuronal models of CLN3 disease. Specifically, flunarizine rescued the short lifespan of XT7 worms and prevented their pathophysiologic mitochondrial accumulation. These results confirm the treatment efficacy and dosing of flunarizine in cln-3 disease in a translational model organism. Clinical treatment trials in CLN3 human patients are now needed to test the dosing regimen and efficacy of flunarizine in individuals suffering with this otherwise untreatable and ultimately lethal neurologic disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5309197 | PMC |
http://dx.doi.org/10.1007/s10545-016-9986-1 | DOI Listing |
J Clin Invest
December 2024
Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
Lysosomes are implicated in a wide spectrum of human diseases including monogenic lysosomal storage disorders (LSDs), age-associated neurodegeneration and cancer. Profiling lysosomal content using tag-based lysosomal immunoprecipitation (LysoTagIP) in cell and animal models has substantially moved the field forward, but studying lysosomal dysfunction in human patients remains challenging. Here, we report the development of the 'tagless LysoIP' method, designed to enable the rapid enrichment of lysosomes, via immunoprecipitation, using the endogenous integral lysosomal membrane protein TMEM192, directly from clinical samples and human cell lines (e.
View Article and Find Full Text PDFMol Vis
November 2024
Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab. Beijing, China.
Purpose: The neuronal ceroid lipofuscinoses (NCLs) comprise a group of inherited neurodegenerative disorders with thirteen NCL-disease causing genes ceroid lipofuscinosis neuronal ( identified. The purpose of this study was to describe the genetic and clinical characteristics of a cohort of Chinese patients harboring biallelic variants in the genes.
Methods: We recruited 14 patients from 13 unrelated families who carried biallelic variants in the genes.
Invest Ophthalmol Vis Sci
November 2024
Department of Ophthalmology, University of Rochester, Rochester, New York, United States.
Stem Cells Transl Med
October 2024
Division of Pediatric Transplant and Cellular Therapy, Duke University, 2400 Pratt Street, Box 102502, Durham, NC 27705, United States.
Commun Biol
October 2024
Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA.
Loss-of-function mutations in CLN3 cause juvenile Batten disease, featuring neurodegeneration and early-stage neuroinflammation. How loss of CLN3 function leads to early neuroinflammation is not yet understood. Here, we have comprehensively studied microglia from Cln3 mice, a genetically accurate disease model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!