[Hypoxic respiratory failure in chronic lung disease].

Med Klin Intensivmed Notfmed

Diagnostische und Interventionelle Radiologie mit Nuklearmedizin, Thoraxklinik, Universitätsklinikum Heidelberg, Heidelberg, Deutschland.

Published: March 2017

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00063-016-0227-zDOI Listing

Publication Analysis

Top Keywords

[hypoxic respiratory
4
respiratory failure
4
failure chronic
4
chronic lung
4
lung disease]
4
[hypoxic
1
failure
1
chronic
1
lung
1
disease]
1

Similar Publications

The interactive toxic effect of homocysteine and copper on cardiac microvascular endothelial cells during ischemia-reperfusion injury.

Chem Biol Interact

January 2025

Department of Thoracic Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, PR China; Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine, Nanchang 330000, Jiangxi, PR China; Jiangxi Institute of Respiratory Disease, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, Jiangxi, PR China. Electronic address:

Hyperhomocysteinemia (HHcy) is associated with the development and progression of chronic cardiovascular diseases through the deleterious effects of high levels of homocysteine (Hcy) on the cardiovascular system. However, the exact mechanism of action of Hcy on the acute injury of the cardiovascular system following ischemia/reperfusion (I/R) remains unclear. The present study demonstrated that copper mobilization occurs during cardiac I/R, and the interactive toxic effect of Hcy and mobile Cu during cardiac I/R induces necroptosis of cardiac microvascular endothelial cells (CMECs) and thus enhances cardiac dysfunction.

View Article and Find Full Text PDF

Hypoxia Combined With Interleukin-17 Regulates Hypoxia-Inducible Factor-1α/Endothelial Nitric Oxide Synthase Expression in Pulmonary Artery Endothelial Cells.

J Cell Mol Med

January 2025

Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.

The pathogenesis of chronic thromboembolic pulmonary hypertension may be multifactorial and requires further studies. We explored alterations in pulmonary artery endothelial cells under the hypoxic and elevated interleukin-17 conditions that are commonly present in patients with chronic thromboembolic pulmonary hypertension. We measured the serum interleukin-17 levels in 10 chronic thromboembolic pulmonary hypertension patients and 10 healthy control persons.

View Article and Find Full Text PDF

Blastomycosis is a rare fungal infection endemic to North America and parts of Africa. It can be challenging to diagnose until it reaches a critical stage. We present a blastomycosis case in Alabama, emphasizing the importance of early recognition and management.

View Article and Find Full Text PDF

The effect of inhaled nitric oxide treatment on biomarkers of oxidative/nitrosative damage to proteins and DNA/RNA.

Free Radic Biol Med

January 2025

Neonatal Research Group, Health Research Institute Hospital La Fe (IISLAFE), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Spanish Network in Maternal, Neonatal, Child and Developmental Health Research (RICORS SAMID) (RD24/0013/0014), Instituto de Salud Carlos III, Madrid, Spain; Division of Neonatology, University & Polytechnic Hospital La Fe, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain. Electronic address:

Inhaled nitric oxide (iNO) is a selective pulmonary vasodilator that is used as a treatment for persistent pulmonary hypertension in neonates (PPHN) with hypoxic respiratory failure. The generation of reactive oxygen and nitrogen species might induce oxidative/nitrosative damage to multiple organs. There is an increasing scientific and clinical interest in the determination of specific biomarkers to measure the degree of oxidative/nitrosative stress in non-invasively collected biofluids.

View Article and Find Full Text PDF

The purpose of this work is to evaluate the feasibility of lung imaging using 3D electrical impedance tomography (EIT) during spontaneous breathing trials (SBTs) in patients with acute hypoxic respiratory failure. EIT is a noninvasive, nonionizing, real-time functional imaging technique, suitable for bedside monitoring in critically ill patients. EIT data were collected in 24 mechanically ventilated patients immediately preceding and during a SBT on two rows of 16 electrodes using a simultaneous multicurrent source EIT system for 3D imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!