A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Polyacrylonitrile nanofiber membranes modified with ionically crosslinked polyelectrolyte multilayers for the separation of ionic impurities. | LitMetric

Nanofiltration membranes were prepared by forming multilayers of branched polyethylenimine (BPEI) and polyacrylic acid (PAA) on a polyacrylonitrile (PAN) nanofibrous mat by layer-by-layer (LbL) assembly. The degree of ionization (DI) of PAA, estimated using FTIR spectra both in the absence and presence of added salt, was shown to have a strong influence on the BPEI/PAA film growth. BPEI/PAA multilayers grew exponentially when the DI of PAA was less than 30%, or when the pH of PAA during LbL formation was less than 3.5. Subsequently, BPEI/PAA multilayers were formed on the PAN nanofiber mats by depositing the polyelectrolytes at the experimental conditions that favored maximum film growth. The separation layer formed with 15 bilayers of BPEI/PAA has a thickness of 1100 nm. PAA ionization was favored within the BPEI/PAA multilayers due to the presence of abundant amine groups in BPEI, and as a result, a strong negative charge was seen for PAN nanofibrous membranes for solution conditions above pH 4.5. Nanofiber membranes modified with 15 bilayers of BPEI/PAA multilayers at an applied pressure of 4 bar had a pure water flux of 19.7 Lm h and a MgSO rejection of 98.7%. This performance represents 1.6 times higher flux and 1.1 times higher salt rejection than the multilayers formed on a conventional asymmetric polymeric support. The higher separation and higher flux capabilities of BPEI/PAA multilayer modified PAN nanofiber membranes was due to the combined effect of high charge density and high porosity of the nanofiber membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6nr06295dDOI Listing

Publication Analysis

Top Keywords

nanofiber membranes
16
bpei/paa multilayers
16
membranes modified
8
pan nanofibrous
8
film growth
8
multilayers formed
8
pan nanofiber
8
bilayers bpei/paa
8
times higher
8
higher flux
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!