Highlights from Faraday Discussion on Nanoparticles with Morphological and Functional Anisotropy, Glasgow, UK, July 2015.

Chem Commun (Camb)

Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, Univ. Paris Saclay, Bâtiment 510, 91405, Orsay, France.

Published: November 2016

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6cc90471hDOI Listing

Publication Analysis

Top Keywords

highlights faraday
4
faraday discussion
4
discussion nanoparticles
4
nanoparticles morphological
4
morphological functional
4
functional anisotropy
4
anisotropy glasgow
4
glasgow july
4
july 2015
4
highlights
1

Similar Publications

Introduction: The transition to electric vehicles (EVs) has highlighted the need for efficient diagnostic methods to assess the state of health (SoH) of lithium-ion batteries (LIBs) at the end of their life cycle. Electrochemical Impedance Spectroscopy (EIS) offers a non-invasive technique for determining battery degradation. However, automating this process in industrial settings remains a challenge.

View Article and Find Full Text PDF

Inverse design of promising electrocatalysts for CO reduction via generative models and bird swarm algorithm.

Nat Commun

January 2025

Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 21189, China.

Directly generating material structures with optimal properties is a long-standing goal in material design. Traditional generative models often struggle to efficiently explore the global chemical space, limiting their utility to localized space. Here, we present a framework named Material Generation with Efficient Global Chemical Space Search (MAGECS) that addresses this challenge by integrating the bird swarm algorithm and supervised graph neural networks, enabling effective navigation of generative models in the immense chemical space towards materials with target properties.

View Article and Find Full Text PDF

Rigid, conjugated molecules are excellent candidates as molecular wires since they can achieve full extension between electrodes while maintaining conjugation. Molecular design can be used to minimize the accessible pi surface and interactions between the bridging wire and the electrode. Polyynes are archetypal molecular wires that feature a rigid molecular framework with a cross-section of a single carbon atom.

View Article and Find Full Text PDF

Recent Advances on Characterization Techniques for the Composition-Structure-Property Relationships of Solid Electrolyte Interphase.

Small Methods

January 2025

College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou, 350117, China.

The Solid Electrolyte Interphase (SEI) is a nanoscale thickness passivation layer that forms as a product of electrolyte decomposition through a combination of chemical and electrochemical reactions in the cell and evolves over time with charge/discharge cycling. The formation and stability of SEI directly determine the fundamental properties of the battery such as first coulombic efficiency (FCE), energy/power density, storage life, cycle life, and safety. The dynamic nature of SEI along with the presence of spatially inhomogeneous organic and inorganic components in SEI encompassing crystalline, amorphous, and polymeric nature distributed across the electrolyte to the electrolyte-electrode interface, highlights the need for advanced in situ/operando techniques to understand the formation and structure of these materials in creating a stable interface in real-world operating conditions.

View Article and Find Full Text PDF

An efficient electrocatalytic in-situ hydrogen peroxide generation for ballast water treatment with oxygen groups.

Sci Total Environ

January 2025

Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.

The in-situ electrochemical production of hydrogen peroxide (HO) offers a promising approach for ballast water treatment. However, further advancements are required to develop electrocatalysts capable of achieving efficient HO generation in seawater environments. Herein, we synthesized two-dimensional lamellated porous carbon nanosheets enriched with oxygen functional groups, which exhibited exceptional performance in HO electrosynthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!