Background: The present work was designed to detect heavy metal contents of Al, Zn, Fe, Mn, Ni, V, Co, Cr and Cu in sediments and shells of the collected in polluted and unpolluted areas along the Persian Gulf.
Methods: The samples were taken from surface sediments (0-10 cm) and shells of in two separated areas (polluted and unpolluted) in northern part of the Persian Gulf, Asaluyeh Bay, during summer 2013. The prepared samples were analyzed by inductively coupled plasma-optical emission spectrometry (ICP-OES).
Results: Based on the results, all measured metals including Al, Zn, Fe, Mn, Ni, V, Co, Cr and Cu were meaningfully higher in the sediment samples of polluted area compared to unpolluted area and the order of metal concentrations in the sediment samples were Cr > Co > V > Ni > Zn > Cu > Fe > Al > Mn in polluted area. In the case of shell samples of , polluted area contained significantly higher contents of Al, Zn, Fe, Mn, Ni, Co, Cr and Cu compared to unpolluted area and the order of metal concentrations in the shell samples were Fe > Zn > Al > Mn > Cu > Cr > Ni > Co in the polluted area.
Conclusion: It was concluded that shells of the can be used as a suitable bioindicator for heavy metals in the aquatic environment. Results confirmed that due to the possible contaminations by oil and gas activities near the polluted area perennial monitoring and mitigation measures is extremely necessary.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5057424 | PMC |
http://dx.doi.org/10.1186/s40201-016-0260-0 | DOI Listing |
Bull Environ Contam Toxicol
January 2025
Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610041, China.
The widespread application of swine-farming wastewater to soil and water is increasingly contributing to heavy metal contamination, posing significant environmental risks. This study investigated the concentrations of eight heavy metals in swine-farming wastewater following different treatment processes, and assessed their ecological risks in Sichuan Province, China. The findings revealed that zinc, copper and nickel exhibited the highest concentrations, potentially causing heavy or strong contamination levels and leading to heavy or slight ecological risks.
View Article and Find Full Text PDFEnviron Res
January 2025
ISPRA, Italian National Institute for Environmental Protection and Research, Laboratory of Nekton Ecology, Via del Fosso di Fiorano 64, 00143, Rome, RM, Italy.
Implementing biomonitoring programs for assessing the impact of microplastic ingestion on marine organisms is a priority to verify the effectiveness of measures adopted by legislative frameworks to deal with plastic pollution. At the European level, the Marine Strategy Framework Directive mandates Member States to establish a unified monitoring approach. However, due to the vast range and differences in marine regions, the selection of bioindicators must be tailored locally.
View Article and Find Full Text PDFNutrients
January 2025
Division of Human Nutrition and Health, Wageningen University & Research, 6700 AB Wageningen, The Netherlands.
Background: Rapid socio-economic developments confront China with a rising consumption of ultra-processed foods (UPFs) and ultra-processed drinks (UPDs). This study aims to evaluate their potential impact on diet transformation towards sustainability including nutrition, environmental sustainability, and diet-related cost.
Methods: Dietary intake was assessed by 24 h recalls in 27,311 participants (age: 40.
Polymers (Basel)
January 2025
Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Universidad de León, 24007 León, Spain.
Bioplastics are emerging as a promising solution to reduce pollution caused by petroleum-based plastics. Among them, polyhydroxyalkanoates (PHAs) stand out as viable biotechnological alternatives, though their commercialization is limited by expensive downstream processes. Traditional PHA extraction methods often involve toxic solvents and high energy consumption, underscoring the need for more sustainable approaches.
View Article and Find Full Text PDFPathogens
January 2025
Centre for Environmental and Marine Studies (CESAM), Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
Globally, forests are constantly threatened by a plethora of disturbances of natural and anthropogenic origin, such as climate change, forest fires, urbanization, and pollution. Besides the most common stressors, during the last few years, Portuguese forests have been impacted by severe decline phenomena caused by invasive pathogens, many of which belong to the genus . The genus includes a large number of species that are invading forest ecosystems worldwide, chiefly as a consequence of global trade and human activities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!