AI Article Synopsis

  • Tin(II) monosulfide (SnS) is a promising semiconductor with a suitable band gap, high visible light absorption, and is made from earth-friendly, non-toxic materials, making it attractive for optoelectronic devices.
  • The study synthesizes phase-pure colloidal SnS in three sizes (nanoparticles, medium 2D nanosheets, and large 2D sheets) and evaluates them using time-resolved terahertz spectroscopy (TRTS) to explore charge carrier dynamics.
  • Results show that size influences charge carrier mobility, with larger SnS crystals exhibiting higher mobility, and annealing the films enhances mobility significantly, especially for smaller colloids.

Article Abstract

Tin(II) monosulfide (SnS) is a semiconductor material with an intermediate band gap, high absorption coefficient in the visible range, and earth abundant, non-toxic constituent elements. For these reasons, SnS has generated much interest for incorporation into optoelectronic devices, but little is known concerning the charge carrier dynamics, especially as measured by optical techniques. Here, as opposed to prior studies of vapor deposited films, phase-pure colloidal SnS was synthesized by solution chemistry in three size regimes, ranging from nanometer- to micron-scale (SnS small nanoparticles, SnS medium 2D nanosheets, and SnS large 2D μm-sheets), and evaluated by time-resolved terahertz spectroscopy (TRTS); an optical, non-contact probe of the photoconductivity. Dropcast films of the SnS colloids were studied by TRTS and compared to both thermally annealed films and dispersed suspensions of the same colloids. TRTS results revealed that the micron-scale SnS crystals and all of the annealed films undergo decay mechanisms during the first 200 ps following photoexcitation at 800 nm assigned to hot carrier cooling and carrier trapping. The charge carrier mobility of both the dropcast and annealed samples depends strongly on the size of the constituent colloids. The mobility of the SnS colloidal films, following the completion of the initial decays, ranged from 0.14 cm/V·s for the smallest SnS crystals to 20.3 cm/V·s for the largest. Annealing the colloidal films resulted in a ~ 20 % improvement in mobility for the large SnS 2D μm-sheets and a ~ 5-fold increase for the small nanoparticles and medium nanosheets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066166PMC
http://dx.doi.org/10.1021/acs.jpcc.6b01684DOI Listing

Publication Analysis

Top Keywords

charge carrier
12
sns
11
carrier dynamics
8
time-resolved terahertz
8
terahertz spectroscopy
8
tinii monosulfide
8
micron-scale sns
8
small nanoparticles
8
medium nanosheets
8
annealed films
8

Similar Publications

One-Pot Synthesis of Oxygen Vacancy-Rich Amorphous/Crystalline Heterophase CaWO Nanoparticles for Enhanced Radiodynamic-Immunotherapy.

Adv Sci (Weinh)

December 2024

New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.

Radiodynamic therapy that employs X-rays to trigger localized reactive oxygen species (ROS) generation can tackle the tissue penetration issue of phototherapy. Although calcium tungstate (CaWO) shows great potential as a radiodynamic agent benefiting from its strong X-ray absorption and the ability to generate electron-hole (e-h) pairs, slow charge carrier transfer and fast e-h recombination greatly limit its ROS-generating performance. Herein, via a one-pot wet-chemical method, oxygen vacancy-rich amorphous/crystalline heterophase CaWO nanoparticles (Ov-a/c-CaWO NPs) with enhanced radiodynamic effect are synthesized for radiodynamic-immunotherapy of cancer.

View Article and Find Full Text PDF

A review on polysaccharide-based delivery systems for edible bioactives: pH responsive, controlled release, and emerging applications.

Int J Biol Macromol

December 2024

College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China. Electronic address:

pH changes occur during bodily lesions, presenting an opportunity for leveraging pH-responsive delivery systems as signals for a targeted response. This review explores the design and application of pH-responsive delivery systems based on natural polysaccharides for the controlled release of bioactives. The article examines the development of diverse delivery carriers, including nanoparticles, nanofibers, nanogels, core-shell carriers, hydrogels, emulsions as well as liposomes and their capacity to respond to pH variations, enabling the precise and targeted delivery of bioactives within the human body.

View Article and Find Full Text PDF

Ultrathin, Friendly Environmental, and Flexible CsPb(Cl/Br)-Silica Composite Film for Blue-Light-Emitting Diodes.

Langmuir

December 2024

Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.

Due to intrinsic defects in blue-light-emitting perovskite materials, the charge carriers are prone to being trapped by the trap states. Therefore, the preparation of efficient blue-light-emitting perovskite materials remains a significant challenge. Herein, CsPb(Cl/Br) nanocrystal (NCs)@SiO structures were fabricated through hydrolyzing (3-aminopropyl)-triethoxysilane (APTS).

View Article and Find Full Text PDF

Photocatalytic technology holds significant promise for sustainable development and environmental protection due to its ability to utilize renewable energy sources and degrade pollutants efficiently. In this study, BiOI nanosheets (NSs) were synthesized using a simple water bath method with varying amounts of mannitol and reaction temperatures to investigate their structural, morphological, photoelectronic, and photocatalytic properties. Notably, the introduction of mannitol played a critical role in inducing a transition in BiOI from an n-type to a p-type semiconductor, as evidenced by Mott-Schottky (M-S) and band structure analyses.

View Article and Find Full Text PDF

Cisplatin-based platinum compounds are important clinical chemotherapeutic agents that participate in most tumor chemotherapy regimens. Through density-functional theory calculations, the formation and stability of the inorganic oxide carrier, the mechanisms of the hydrolysis reaction of the activated platinum compound, and its binding mechanism with DNA bases can be studied. The higher the oxidation state of Pt (II to IV), the more electrons transfer from the magnesia-gold composite material to the platinum compound.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!