In its natural habitat, the soil bacterium often has to cope with fluctuating osmolality and nutrient availability. Upon nutrient depletion it can form dormant spores, which can revive to form vegetative cells when nutrients become available again. While the effects of salt stress on spore germination have been analyzed previously, detailed knowledge on the salt stress response during the subsequent outgrowth phase is lacking. In this study, we investigated the changes in gene expression during outgrowth in the presence of 1.2 M NaCl using RNA sequencing. In total, 402 different genes were upregulated and 632 genes were downregulated during 90 min of outgrowth in the presence of salt. The salt stress response of outgrowing spores largely resembled the osmospecific response of vegetative cells exposed to sustained high salinity and included strong upregulation of genes involved in osmoprotectant uptake and compatible solute synthesis. The σ-dependent general stress response typically triggered by salt shocks was not induced, whereas the σ regulon appears to play an important role for osmoadaptation of outgrowing spores. Furthermore, high salinity induced many changes in the membrane protein and transporter transcriptome. Overall, salt stress seemed to slow down the complex molecular reorganization processes ("ripening") of outgrowing spores by exerting detrimental effects on vegetative functions such as amino acid metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5052260PMC
http://dx.doi.org/10.3389/fmicb.2016.01564DOI Listing

Publication Analysis

Top Keywords

salt stress
16
stress response
12
outgrowing spores
12
rna sequencing
8
vegetative cells
8
outgrowth presence
8
high salinity
8
salt
6
stress
5
identification differentially
4

Similar Publications

Late Embryogenesis Abundant (LEA) proteins are extensively distributed among higher plants and are crucial for regulating growth, development, and abiotic stress resistance. However, comprehensive data regarding the LEA gene family in Ipomoea species remains limited. In this study, we conducted a genome-wide comparative analysis across seven Ipomoea species, including sweet potato (I.

View Article and Find Full Text PDF

Genome-wide identification, classification, and expression profiling of LAC gene family in sesame.

BMC Plant Biol

December 2024

Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.

Background: Laccases (LACs) are vital plant growth and development enzymes, participating in lignin biopolymerization and responding to stress. However, the role of LAC genes in plant development as well as stress tolerance, is still not well understood, particularly in sesame (Sesamum indicum L.), an important oilseed crop.

View Article and Find Full Text PDF

Sodium valproate- a salt of valproic acid (VPA), is an anticonvulsant used in the treatment of epilepsy and a range of psychiatric conditions that include panic attacks, anxiety, post-traumatic stress, migraine and bipolar disorder etc. VPA can cause direct damage to many tissues due to accumulation of toxic metabolites. Nowadays, phytochemicals are amongst the best options for the treatment of diseases.

View Article and Find Full Text PDF

ZmGolS1 underlies natural variation of raffinose content and salt tolerance in maize.

J Genet Genomics

December 2024

State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China. Electronic address:

Salt stress significantly inhibits crop growth and development, and mitigating this can enhance salt tolerance in various crops. Previous studies have shown that regulating saccharide biosynthesis is a key aspect of plant salt tolerance; however, the underlying molecular mechanisms remain largely unexplored. In this study, we demonstrate that overexpression of a salt-inducible galactinol synthase gene, ZmGolS1, alleviates salt-induced growth inhibition, likely by promoting raffinose synthesis.

View Article and Find Full Text PDF

Genome-wide identification and analysis of autophagy-related genes (ATGs) in Lycium ruthenicum Murray reveals their crucial roles in salt stress tolerance.

Plant Sci

December 2024

Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

Autophagy is a highly conserved intracellular degradation system that is crucial for nutrient recycling, thus regulating plant growth and development as well as in response to various stresses. Halophytic plant Lycium ruthenicum Murray (L. ruthenicum) is considered as a potential model plant for studying the physiological mechanisms of salt stress tolerance in plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!