Tauroursodeoxycholic acid improves pre-implantation development of porcine SCNT embryo by endoplasmic reticulum stress inhibition.

Reprod Biol

Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon 34134, Republic of Korea. Electronic address:

Published: December 2016

The aim of this study is to investigate whether endoplasmic reticulum (ER) stress attenuation could improve porcine somatic cell nuclear transfer (SCNT) embryo developmental competence. We treated porcine SCNT embryos with TUDCA (tauroursodeoxycholic acid, an inhibitor of ER stress) and/or TM (tunicamycin, an ER stress inducer), and examined embryonic developmental potential, embryo quality, the levels of ER stress markers (XBP1 protein and mRNA) and apoptosis-related-genes (BAX and BCL2 mRNA). Immunostaining detected X-box-binding protein (XBP1), a key gene regulator during ER stress, at all stages of SCNT embryo development. Embryo development analysis revealed that TUDCA treatment markedly increased (p<0.05) blastocyst formation rate, total cell number and inner cell mass (ICM) cell number compared to untreated control group. The TUDCA and TM groups showed significant alterations in XBP1 protein and XBP1-s mRNA levels compared to controls (lower and higher, respectively; p<0.05). Also, TUDCA treatment reduced oxidative stress by up-regulation of the antioxidant, GSH. TUNEL assay showed that TUDCA treatment significantly reduced apoptosis in porcine SCNT blastocysts confirmed by decreased pro-apoptotic BAX and increased anti-apoptotic BCL2 mRNA levels. Collectively, our results indicated that TUDCA can enhance the developmental potential of porcine SCNT embryos by attenuating ER-stress and reducing apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.repbio.2016.10.003DOI Listing

Publication Analysis

Top Keywords

scnt embryo
12
tauroursodeoxycholic acid
8
porcine scnt
8
endoplasmic reticulum
8
reticulum stress
8
embryo development
8
stress
6
embryo
5
acid improves
4
improves pre-implantation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!