Influence of pH on the antioxidant phenols solubilised from hydrothermally treated olive oil by-product (alperujo).

Food Chem

Food Phytochemistry Department, Instituto de la Grasa, Spanish National Research Council (CSIC), Campus Universitario Pablo de Olavide - Edificio 46, Ctra. de Utrera, km. 1, 41013 Seville, Spain. Electronic address:

Published: March 2017

The application of a novel industrial process based on the hydrothermal treatment of olive oil waste (alperujo) led to a final liquid phase that contained a high concentration of simple phenolic compounds. In this study the effect of pH on phenol extraction with ethyl acetate from the aqueous phase of hydrothermally treated alperujo at 160°C/60min (without modification, pH 4.5, and adjusted to pH 2.5) was evaluated, beside the increase of hydroxytyrosol during the storage. The variation of the concentration of phenolic compounds in each extract was analyzed by HPLC. The phenolic extract obtained at pH 4.5 presented a higher proportion of total and individual phenols and better antioxidant capacity in vitro than the extract obtained at pH 2.5. The use of lower pH values enhances the concentration of hydroxytyrosol in the liquid diminishing the storage times.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2016.09.141DOI Listing

Publication Analysis

Top Keywords

hydrothermally treated
8
olive oil
8
phenolic compounds
8
influence antioxidant
4
antioxidant phenols
4
phenols solubilised
4
solubilised hydrothermally
4
treated olive
4
oil by-product
4
by-product alperujo
4

Similar Publications

Effect of Ethanol Treatment and Calcination Temperature on Water Vapor Adsorption properties of MCM-41.

ACS Appl Mater Interfaces

December 2024

Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2, Nengyuan Rd., Tianhe DistrictGuangzhou 510640, China.

MCM-41, a mesoporous material with a high surface area and tunable pore size, shows great potential for water vapor adsorption. However, due to its large pore size, the effective adsorption capacity at medium to low relative partial pressures is limited in adsorption chiller applications. In this work, MCM-41 was successfully synthesized at room temperature using cetyltrimethylammonium bromide (CTAB) as a templating agent.

View Article and Find Full Text PDF

Contamination of chars with dioxin-like polychlorinated biphenyls (dl-PCB) significantly limits their use and hinders their deployment in the circular bioeconomy, specifically in applications that may lead to dietary exposure. Here, for the first time, we review the levels of contamination of chars produced from pyrolysis and hydrothermal carbonisation (HTC) with dl-PCB congeners. We conduct a detailed and critical examination of the role played by the processing parameters, such as temperature and residence time, and the reaction mechanisms, to detoxify the biomass under an oxygen-free atmosphere during its valorisation.

View Article and Find Full Text PDF

Uniform, mesoporous copper(II) oxide nanospindles (CuO NSs) were synthesized via a method based on templated hydrothermal oxidation of copper in the presence of monodisperse poly(glycerol dimethacrylate--methacrylic acid) nanoparticles (poly(GDMA--MAA) NPs). Subsequent decoration of CuO NSs with a CaO nanoshell (CuO@CaO NSs) yielded a nanozyme capable of Cu(I)/Cu(II) redox cycling. Activation of the Cu(I)/Cu(II) cycle by exogenously generated HO from the CaO nanoshell significantly enhanced glutathione (GSH) depletion.

View Article and Find Full Text PDF

Background: The lymphatic system is the major route of cancer metastasis, and sentinel lymph nodes (SLNs) are the first station for the spread of cancer cells. Accurate identification of SLNs by tracers during surgery is crucial for SLN biopsy and lymphadenectomy. However, conventional monomodal tracers such as blue dyes and carbon nanoparticles often induce a misjudgment of SLNs and thus are still unsatisfying for clinical applications.

View Article and Find Full Text PDF

Glutathione (GSH) is a key biomarker closely associated with cancer, and its content varies greatly between normal cells and cancer cells. However, intracellular detection of GSH was challenging because existing probes not only have a long detection time but also have fluorescence in the blue-green region that overlaps with the biological matrix's spontaneous fluorescence, thus affecting the detection accuracy. Therefore, a new red fluorescent nano-probe was needed to rapidly and accurately detected GSH within the biological matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!