Background: Bone marrow-derived cell therapy has been used to treat acute myocardial infarction. However, the therapeutic efficacy of this approach remains controversial. Here, we performed a systematic review and meta-analysis to evaluate short-term and long-term effectiveness of bone marrow-derived therapy.
Methods: We searched eight databases (Ovid-Medline, Ovid-EMBASE, Cochrane Library, KoreaMed, KMBASE, KISS, RISS, and KisTi) up to December 2014. Demographic characteristics, clinical outcomes, and adverse events were analyzed. We identified 5534 potentially relevant studies; 405 were subjected to a full-text review. Forty-three studies with 2635 patients were included in this review.
Results: No safety issues related to cell injection were reported during follow-up. At 6 months, cell-injected patients showed modest improvements in left ventricular ejection fraction (LVEF) compared with the control group. However, there were no differences between groups at other time points. In the cardiac MRI analysis, there were no significant differences in infarct size reduction between groups. Interestingly, mortality tended to be reduced at the 3-year follow-up, and at the 5-year follow-up, cell injection significantly decreased all-cause mortality.
Conclusions: This meta-analysis demonstrated discrepancies between short-term LV functional improvement and long-term all-cause mortality. Future clinical trials should include long-term follow-up outcomes to validate the therapeutic efficacy of cell therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072331 | PMC |
http://dx.doi.org/10.1186/s13287-016-0415-z | DOI Listing |
Pharmaceuticals (Basel)
January 2025
Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
: , a bacterium residing in hair follicles, triggers acne by inducing monocyte-mediated inflammatory cytokine production. Gedunin, a limonoid derived from (commonly known as neem), is renowned for its antifungal, antimalarial, anticancer, anti-inflammatory, and neuroprotective effects. However, its role in mitigating -induced skin inflammation remains unexplored.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
College of Korea Medicine, Woosuk University, Jeonju-si 54986, Republic of Korea.
Monosodium urate crystal accumulation in the joints is the cause of gout, an inflammatory arthritis that is initiated by elevated serum uric acid levels. It is the most prevalent form of inflammatory arthritis, affecting millions worldwide, and requires effective treatments. The necessity for alternatives with fewer side effects is underscored by the frequent adverse effects of conventional therapies, such as urate-lowering drugs.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
Protocadherin-7 (Pcdh7) is a member of the non-clustered protocadherin δ1 subgroup within the cadherin superfamily. Pcdh7 has been shown to control osteoclast differentiation via the protein phosphatase 2A (PP2A)-glycogen synthase kinase-3β (GSK3β)-small GTPase signaling axis. As protocadherins serve multiple biological functions, a deeper understanding of Pcdh7's biological features is valuable.
View Article and Find Full Text PDFBiology (Basel)
January 2025
Institute for Transfusion Medicine, Medical Faculty, Leipzig University, 04103 Leipzig, Germany.
Intravenously transplanted mesenchymal stromal cells (MSCs) have been shown to interact with endothelial cells and to migrate to tissues. However, intracellular signals regulating MSC migration are still incompletely understood. Here, we analyzed the role of Rap1 GTPase in the migration of human bone marrow-derived MSCs in vitro and in short-term homing in mice in vivo.
View Article and Find Full Text PDFToxicol Appl Pharmacol
January 2025
Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China. Electronic address:
Background And Aim: Formononetin (FMN) is a compound isolated from Astragalus membranaceus, that exhibits a range of pharmacological activities, including antitumor, anti-inflammatory, hypolipidemic, and antioxidant effects. Although preliminary study suggests that FMN have a therapeutic role in Inflammatory Bowel Disease (IBD), its specific mechanism of action requires further investigation. This study aimed to investigate the mechanism by which FMN treats DSS-induced colitis in mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!