AI Article Synopsis

  • KRAS mutations in colorectal cancer lead to altered amino acid metabolism, specifically decreasing aspartate levels and increasing asparagine levels.
  • The enzyme asparagine synthetase (ASNS), which converts aspartate to asparagine, is upregulated in KRAS-mutant CRC through the PI3K-AKT-mTOR signaling pathway.
  • Targeting ASNS, especially in combination with L-asparaginase and rapamycin, shows promise as a therapeutic approach for treating KRAS-mutant colorectal cancer.

Article Abstract

A number of clinical trials have shown that KRAS mutations of colorectal cancer (CRC) can predict a lack of responses to anti-epidermal growth factor receptor-based therapy. Recently, there have been several studies to elucidate metabolism reprogramming in cancer. However, it remains to be investigated how mutated KRAS can coordinate the metabolic shift to sustain CRC tumor growth. In this study, we found that KRAS mutation in CRC caused alteration in amino acid metabolism. KRAS mutation causes a marked decrease in aspartate level and an increase in asparagine level in CRC. Using several human CRC cell lines and clinical specimens of primary CRC, we demonstrated that the expression of asparagine synthetase (ASNS), an enzyme that synthesizes asparagine from aspartate, was upregulated by mutated KRAS and that ASNS expression was induced by KRAS-activated signaling pathway, in particular PI3K-AKT-mTOR pathway. Importantly, we demonstrated that KRAS-mutant CRC cells could become adaptive to glutamine depletion through asparagine biosynthesis by ASNS and that asparagine addition could rescue the inhibited growth and viability of cells grown under the glutamine-free condition in vitro. Notably, a pronounced growth suppression of KRAS-mutant CRC was observed upon ASNS knockdown in vivo. Furthermore, combination of L-asparaginase plus rapamycin markedly suppressed the growth of KRAS-mutant CRC xenografts in vivo, whereas either L-asparaginase or rapamycin alone was not effective. These results indicate ASNS might be a novel therapeutic target against CRCs with mutated KRAS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5071549PMC
http://dx.doi.org/10.1016/j.neo.2016.09.004DOI Listing

Publication Analysis

Top Keywords

mutated kras
12
kras-mutant crc
12
crc
9
kras mutations
8
mutations colorectal
8
colorectal cancer
8
glutamine depletion
8
asparagine synthetase
8
kras mutation
8
l-asparaginase rapamycin
8

Similar Publications

Introduction: and mutations are frequently detected in lung adenocarcinoma (LUAD). Tumor mutational signature (TMS) determination is an approach to identify somatic mutational patterns associated with pathogenic factors. In this study, through the analysis of TMS, the underlying pathogenic factors of LUAD with and mutations were traced.

View Article and Find Full Text PDF

Introduction: The predictive and prognostic implications of different mutation (m) subtypes in metastatic NSCLC have not been clearly defined. We used a nationwide observational database to investigate whether m subtypes differ in their association with survival in metastatic NSCLC treated with immune checkpoint inhibitor (ICI)-based therapy, across programmed death-ligand 1 (PD-L1) levels.

Methods: Patients with advanced nonsquamous NSCLC who initiated first-line ICI-based therapy from 2016 to 2021 and had known PD-L1 expression and comprehensive genomic profiling including , , , and were included.

View Article and Find Full Text PDF

[Annual therapeutic advances in advanced non-small cell lung cancer in 2024].

Zhonghua Jie He He Hu Xi Za Zhi

January 2025

National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou510120, China.

This paper reviews the clinical progress achieved in 2024 in the field of advanced non-small cell lung cancer (NSCLC), both nationally and internationally. In the area of targeted therapy, particularly for rare mutations, new targets beyond EGFR, ALK, and ROS1 mutations, such as KRAS G12C, HER2, and MET, have gained more clinical validation and approval for targeted drugs in 2024. KRAS G12C inhibitors have also shown significant improvements in disease control rates for patients.

View Article and Find Full Text PDF

Gallbladder cancer (GBC) is an aggressive malignancy with a poor prognosis, often diagnosed at advanced stages due to subtle early symptoms. Recent studies have provided a comprehensive view of GBC's genetic and mutational landscape, uncovering crucial pathways involved in its pathogenesis. Environmental exposures, particularly to heavy metals, have been linked to elevated GBC risk.

View Article and Find Full Text PDF

Nearly all pancreatic adenocarcinomas (PDAC) are genomically characterized by KRAS exon 2 mutations. Most patients with PDAC present with advanced disease and are treated with cytotoxic therapy. Genomic biomarkers prognostic of disease outcomes have been challenging to identify.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!