A number of clinical trials have shown that KRAS mutations of colorectal cancer (CRC) can predict a lack of responses to anti-epidermal growth factor receptor-based therapy. Recently, there have been several studies to elucidate metabolism reprogramming in cancer. However, it remains to be investigated how mutated KRAS can coordinate the metabolic shift to sustain CRC tumor growth. In this study, we found that KRAS mutation in CRC caused alteration in amino acid metabolism. KRAS mutation causes a marked decrease in aspartate level and an increase in asparagine level in CRC. Using several human CRC cell lines and clinical specimens of primary CRC, we demonstrated that the expression of asparagine synthetase (ASNS), an enzyme that synthesizes asparagine from aspartate, was upregulated by mutated KRAS and that ASNS expression was induced by KRAS-activated signaling pathway, in particular PI3K-AKT-mTOR pathway. Importantly, we demonstrated that KRAS-mutant CRC cells could become adaptive to glutamine depletion through asparagine biosynthesis by ASNS and that asparagine addition could rescue the inhibited growth and viability of cells grown under the glutamine-free condition in vitro. Notably, a pronounced growth suppression of KRAS-mutant CRC was observed upon ASNS knockdown in vivo. Furthermore, combination of L-asparaginase plus rapamycin markedly suppressed the growth of KRAS-mutant CRC xenografts in vivo, whereas either L-asparaginase or rapamycin alone was not effective. These results indicate ASNS might be a novel therapeutic target against CRCs with mutated KRAS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5071549 | PMC |
http://dx.doi.org/10.1016/j.neo.2016.09.004 | DOI Listing |
Cancer Control
January 2025
School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
Introduction: and mutations are frequently detected in lung adenocarcinoma (LUAD). Tumor mutational signature (TMS) determination is an approach to identify somatic mutational patterns associated with pathogenic factors. In this study, through the analysis of TMS, the underlying pathogenic factors of LUAD with and mutations were traced.
View Article and Find Full Text PDFJTO Clin Res Rep
January 2025
Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
Introduction: The predictive and prognostic implications of different mutation (m) subtypes in metastatic NSCLC have not been clearly defined. We used a nationwide observational database to investigate whether m subtypes differ in their association with survival in metastatic NSCLC treated with immune checkpoint inhibitor (ICI)-based therapy, across programmed death-ligand 1 (PD-L1) levels.
Methods: Patients with advanced nonsquamous NSCLC who initiated first-line ICI-based therapy from 2016 to 2021 and had known PD-L1 expression and comprehensive genomic profiling including , , , and were included.
Zhonghua Jie He He Hu Xi Za Zhi
January 2025
National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou510120, China.
This paper reviews the clinical progress achieved in 2024 in the field of advanced non-small cell lung cancer (NSCLC), both nationally and internationally. In the area of targeted therapy, particularly for rare mutations, new targets beyond EGFR, ALK, and ROS1 mutations, such as KRAS G12C, HER2, and MET, have gained more clinical validation and approval for targeted drugs in 2024. KRAS G12C inhibitors have also shown significant improvements in disease control rates for patients.
View Article and Find Full Text PDFMutat Res
December 2024
School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand 248007, India. Electronic address:
Gallbladder cancer (GBC) is an aggressive malignancy with a poor prognosis, often diagnosed at advanced stages due to subtle early symptoms. Recent studies have provided a comprehensive view of GBC's genetic and mutational landscape, uncovering crucial pathways involved in its pathogenesis. Environmental exposures, particularly to heavy metals, have been linked to elevated GBC risk.
View Article and Find Full Text PDFNat Med
January 2025
Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
Nearly all pancreatic adenocarcinomas (PDAC) are genomically characterized by KRAS exon 2 mutations. Most patients with PDAC present with advanced disease and are treated with cytotoxic therapy. Genomic biomarkers prognostic of disease outcomes have been challenging to identify.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!