Spindle poisons elicit various cellular responses following metaphase arrest, but how they relate to long-term clonogenicity has remained unclear. We prepared several HeLa lines in which the canonical apoptosis pathway was attenuated, and compared their acute responses to paclitaxel, as well as long-term fate, with the parental line. Three-nanomolar paclitaxel induced brief metaphase arrest (<5 h) often followed by aberrant mitosis, and about 90% of the cells of each line had lost their clonogenicity after 48 h of the treatment. A combination of the same concentration of paclitaxel with the kinesin-5 inhibitor, S-trityl-L-cysteine (STLC), at 1 µM led to much longer arrest (∼20 h) and predominance of subsequent line-specific responses: mitochondrial outer membrane permeabilization (MOMP) in the apoptosis-prone line, or mitotic slippage without obvious MOMP in the apoptosis-reluctant lines. In spite of this, combination with STLC did not lead to a marked difference in clonogenicity between the apoptosis-prone and -reluctant lines, and intriguingly resulted in slightly better clonogenicity than that of cells treated with 3 nM paclitaxel alone. This indicates that changes in the short-term response within 3 possible scenarios - acute MOMP, mitotic slippage or aberrant mitosis - has only a weak impact on clonogenicity. Our results suggest that once cells have committed to slippage or aberrant mitosis they eventually undergo proliferative death irrespective of canonical apoptosis or p53 function. Consistent with this, cells with irregular DNA contents originating from mitotic slippage or aberrant mitosis were mostly eliminated from the population within several rounds of division after the drug treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5176135PMC
http://dx.doi.org/10.1080/15384101.2016.1242537DOI Listing

Publication Analysis

Top Keywords

canonical apoptosis
8
metaphase arrest
8
paclitaxel-induced aberrant
4
aberrant mitosis
4
mitosis mitotic
4
mitotic slippage
4
slippage efficiently
4
efficiently lead
4
lead proliferative
4
proliferative death
4

Similar Publications

Advances in research on the impact and mechanisms of pathogenic microorganism infections on pyroptosis.

Front Microbiol

December 2024

Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.

Pyroptosis, also known as inflammatory necrosis, is a form of programmed cell death characterized by the activation of gasdermin proteins, leading to the formation of pores in the cell membrane, continuous cell swelling, and eventual membrane rupture. This process results in the release of intracellular contents, including pro-inflammatory cytokines like IL-1β and IL-18, which subsequently trigger a robust inflammatory response. This process is a crucial component of the body's innate immune response and plays a significant role in combating infections.

View Article and Find Full Text PDF

Inflammasomes and idiopathic inflammatory myopathies.

Front Immunol

December 2024

Department of Rheumatology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China.

Idiopathic inflammatory myopathies (IIM) are a group of systemic autoimmune diseases characterized by muscle weakness and elevated serum creatine kinase levels. Recent research has highlighted the role of the innate immune system, particularly inflammasomes, in the pathogenesis of IIM. This review focuses on the role of inflammasomes, specifically NLRP3 and AIM2, and their associated proteins in the development of IIM.

View Article and Find Full Text PDF

Purpose: Intermittent hypoxia (IH), a defining feature of obstructive sleep apnea (OSA), is associated with heart damage and linked to transient receptor potential canonical channel 5 (TRPC5). Nonetheless, the function of TRPC5 in OSA-induced cardiac injury remains uncertain. For this research, we aimed to explore the role and potential mechanism of TRPC5 in cardiomyocyte injury induced by intermittent hypoxia.

View Article and Find Full Text PDF

Deletion of lymphotoxin-β receptor (LTβR) protects against acute kidney injury by PPARα pathway.

Mol Med

December 2024

Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, China.

Background: Recent data has shown a considerable advancement in understanding the role of lymphotoxin-β receptor (LTβR) in inflammation. However, the functions and underlying mechanisms of LTβR in acute kidney injury (AKI) remain largely unknown.

Methods: AKI was induced in mice by renal ischemia-reperfusion (I/R).

View Article and Find Full Text PDF

Background: MYC-driven lymphomas are a subset of B-cell lymphomas characterized by genetic alterations that dysregulate the expression of the MYC oncogene. When overexpressed, typically through chromosomal translocations, amplifications, or other mechanisms, MYC can drive uncontrolled cell growth and contribute to cancer development. MYC-driven lymphomas are described as aggressive entities which require intensive treatment approaches and can be associated with poor prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!