Lentibulariaceae is the richest family of carnivorous plants spanning three genera including Pinguicula, Genlisea, and Utricularia. Utricularia is globally distributed, and, unlike Pinguicula and Genlisea, has both aquatic and terrestrial forms. In this study we present the analysis of the chloroplast (cp) genome of the terrestrial Utricularia reniformis. U. reniformis has a standard cp genome of 139,725bp, encoding a gene repertoire similar to essentially all photosynthetic organisms. However, an exclusive combination of losses and pseudogenization of the plastid NAD(P)H-dehydrogenase (ndh) gene complex were observed. Comparisons among aquatic and terrestrial forms of Pinguicula, Genlisea, and Utricularia indicate that, whereas the aquatic forms retained functional copies of the eleven ndh genes, these have been lost or truncated in terrestrial forms, suggesting that the ndh function may be dispensable in terrestrial Lentibulariaceae. Phylogenetic scenarios of the ndh gene loss and recovery among Pinguicula, Genlisea, and Utricularia to the ancestral Lentibulariaceae cladeare proposed. Interestingly, RNAseq analysis evidenced that U. reniformis cp genes are transcribed, including the truncated ndh genes, suggesting that these are not completely inactivated. In addition, potential novel RNA-editing sites were identified in at least six U. reniformis cp genes, while none were identified in the truncated ndh genes. Moreover, phylogenomic analyses support that Lentibulariaceae is monophyletic, belonging to the higher core Lamiales clade, corroborating the hypothesis that the first Utricularia lineage emerged in terrestrial habitats and then evolved to epiphytic and aquatic forms. Furthermore, several truncated cp genes were found interspersed with U. reniformis mitochondrial and nuclear genome scaffolds, indicating that as observed in other smaller plant genomes, such as Arabidopsis thaliana, and the related and carnivorous Genlisea nigrocaulis and G. hispidula, the endosymbiotic gene transfer may also shape the U. reniformis genome in a similar fashion. Overall the comparative analysis of the U. reniformis cp genome provides new insight into the ndh genes and cp genome evolution of carnivorous plants from Lentibulariaceae family.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072713 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0165176 | PLOS |
Ann Bot
December 2024
Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
Background: Species of the carnivorous family Lentibulariaceae exhibit the smallest genomes in flowering plants. We explored the hypothesis that their minute genomes result from the unique mitochondrial cytochrome c oxidase (COX) mutation. The mutation may boost mitochondrial efficiency, which is especially useful for suction-bladder traps of Utricularia, but also increase DNA-damaging reactive oxygen species, leading to genome shrinkage through deletion-biased DNA repair.
View Article and Find Full Text PDFPLoS One
June 2017
Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Câmpus Jaboticabal, São Paulo, Brazil.
Lentibulariaceae is the richest family of carnivorous plants spanning three genera including Pinguicula, Genlisea, and Utricularia. Utricularia is globally distributed, and, unlike Pinguicula and Genlisea, has both aquatic and terrestrial forms. In this study we present the analysis of the chloroplast (cp) genome of the terrestrial Utricularia reniformis.
View Article and Find Full Text PDFMol Biol Evol
March 2014
Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany.
Carnivorous Lentibulariaceae exhibit the most sophisticated implementation of the carnivorous syndrome in plants. Their unusual lifestyle coincides with distinct genomic peculiarities such as the smallest angiosperm nuclear genomes and extremely high nucleotide substitution rates across all genomic compartments. Here, we report the complete plastid genomes from each of the three genera Pinguicula, Utricularia, and Genlisea, and investigate plastome-wide changes in their molecular evolution as the carnivorous syndrome unfolds.
View Article and Find Full Text PDFProtoplasma
April 2011
Department of Plant Cytology and Embryology, Jagiellonian University, 52 Grodzka st., 31-044, Cracow, Poland.
Lentibulariaceae is the largest family among carnivorous plants which displays not only an unusual morphology and anatomy but also the special evolution of its embryological characteristics. It has previously been reported by authors that Utricularia species lack a filiform apparatus in the synergids. The main purposes of this study were to determine whether a filiform apparatus occurs in the synergids of Utricularia and its sister genus Genlisea, and to compare the female germ unit in these genera.
View Article and Find Full Text PDFProtoplasma
July 2009
Department of Plant Cytology and Embryology, Jagiellonian University, ul. Grodzka 52, Cracow, 31-044, Poland.
The Lentibulariaceae are highly evolved and specialized carnivorous angiosperms displaying not only unusual morphology and embryology but also specific changes in the genome and chromosomes as large as bacterial chromosomes. Comparative study of the morphology and detailed anatomy of the ovule in the genera Genlisea, Utricularia, and Pinguicula should shed new light on the phylogeny of this family. The clade Genlisea + Utricularia is sister to the genus Pinguicula, which is considered the most primitive taxon within Lentibulariaceae.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!