The availability of several methods to unambiguously mark individual cells has strongly fostered the understanding of clonal developments in hematopoiesis and other stem cell driven regenerative tissues. While cellular barcoding is the method of choice for experimental studies, patients that underwent gene therapy carry a unique insertional mark within the transplanted cells originating from the integration of the retroviral vector. Close monitoring of such patients allows accessing their clonal dynamics, however, the early detection of events that predict monoclonal conversion and potentially the onset of leukemia are beneficial for treatment. We developed a simple mathematical model of a self-stabilizing hematopoietic stem cell population to generate a wide range of possible clonal developments, reproducing typical, experimentally and clinically observed scenarios. We use the resulting model scenarios to suggest and test a set of statistical measures that should allow for an interpretation and classification of relevant clonal dynamics. Apart from the assessment of several established diversity indices we suggest a measure that quantifies the extension to which the increase in the size of one clone is attributed to the total loss in the size of all other clones. By evaluating the change in relative clone sizes between consecutive measurements, the suggested measure, referred to as maximum relative clonal expansion (mRCE), proves to be highly sensitive in the detection of rapidly expanding cell clones prior to their dominant manifestation. This predictive potential places the mRCE as a suitable means for the early recognition of leukemogenesis especially in gene therapy patients that are closely monitored. Our model based approach illustrates how simulation studies can actively support the design and evaluation of preclinical strategies for the analysis and risk evaluation of clonal developments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072636 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0165129 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!