The effect of cropping system on the distribution of organic carbon (OC) and nitrogen (N) in soil aggregates has not been well addressed, which is important for understanding the sequestration of OC and N in agricultural soils. We analyzed the distribution of OC and N associated with soil aggregates in three unfertilized cropping systems in a 27-year field experiment: continuously cropped alfalfa, continuously cropped wheat and a legume-grain rotation. The objectives were to understand the effect of cropping system on the distribution of OC and N in aggregates and to examine the relationships between the changes in OC and N stocks in total soils and in aggregates. The cropping systems increased the stocks of OC and N in total soils (0-40 cm) at mean rates of 15.6 g OC m-2 yr-1 and 1.2 g N m-2 yr-1 relative to a fallow control. The continuous cropping of alfalfa produced the largest increases at the 0-20 cm depth. The OC and N stocks in total soils were significantly correlated with the changes in the >0.053 mm aggregates. 27-year of cropping increased OC stocks in the >0.053 mm size class of aggregates and N stocks in the >0.25 mm size class but decreased OC stocks in the <0.053 mm size class and N stocks in the <0.25 mm size class. The increases in OC and N stocks in these aggregates accounted for 99.5 and 98.7% of the total increases, respectively, in the continuous alfalfa system. The increases in the OC and N stocks associated with the >0.25 mm aggregate size class accounted for more than 97% of the total increases in the continuous wheat and the legume-grain rotation systems. These results suggested that long-term cropping has the potential to sequester OC and N in soils and that the increases in soil OC and N stocks were mainly due to increases associated with aggregates >0.053 mm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072639 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0165018 | PLOS |
Plant Cell Rep
January 2025
Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea.
Viral vector-mediated gene editing is enhanced for cultivated tomato under low temperature conditions, enabling higher mutation rates, heritable, and virus-free gene editing for efficient breeding. The CRISPR/Cas system, a versatile gene-editing tool, has revolutionized plant breeding by enabling precise genetic modifications. The development of robust and efficient genome-editing tools for crops is crucial for their application in plant breeding.
View Article and Find Full Text PDFSci Rep
January 2025
Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt.
The cotton leafworm, Spodoptra littoralis, causes great damage to cotton crops. A new, safer method than insecticide is necessary for its control. Selenium nanoparticles (SeNPs) are metalloid nanomaterial, with extensive biological activities.
View Article and Find Full Text PDFPlant Physiol
January 2025
Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs/Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
Stylo (Stylosanthes guianensis) is a tropical legume that exhibits considerable tolerance to manganese (Mn) toxicity, which severely constrains plant growth in acidic soils. To elucidate the Mn detoxification mechanisms in stylo, this study investigated the excess Mn-regulated metabolic profile of stylo roots and examined the role of metabolic enzymes in Mn tolerance. Excess Mn triggered oxidative stress in the two stylo genotypes tested.
View Article and Find Full Text PDFJ Integr Plant Biol
January 2025
Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
The publication of several high-quality genomes has contributed greatly to clarifying the evolution of citrus. However, due to their complex genetic backgrounds, the origins and evolution of many citrus species remain unclear. We assembled de novo the 294-Mbp chromosome-level genome of a more than 200-year-old primitive papeda (DYC002).
View Article and Find Full Text PDFData Brief
December 2024
Research Centre on Biodiversity and Environment (CRBE), University of Toulouse, CNRS, IRD, Toulouse INP, University of Toulouse 3 - Paul Sabatier (UT3), Toulouse, France.
This article presents data measured in 44 farms covering a range of cropping practices, soil, and production parameters under contrasted types of crop management: conventional and conservation agriculture. Eighty-six winter wheat fields in Northwestern France were monitored for two growing seasons (2021-2023). The dataset encompasses data about cropping practices (tillage, soil cover, rotation, pesticide use, nutrition), soils (chemical, biological, and physical parameters, including texture), and grain production (nutritional, technological, and sanitary indicators).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!