Ginsenoside Rg1 is one of the major active ingredients of Panax ginseng and has showed notable improving learning and memory effects in several behavioral tasks, such as water maze, shuttle-box, and step-through, based on avoidance. However, there was no report about the role of Rg1 on the performance of reward-directed instrumental conditioning, which could reflect the adaptive capacity to ever-changing environments. Thus, in this study, the reward devaluation test and conditional visual discrimination task were conducted to study the ameliorating effects of Rg1 on cognitive deficits, especially the loss of adaptation capacity in chronic restraint stress (CRS) rat model. Our results showed that rat subjected to CRS became insensitive to the changes in outcome value, and it significantly harmed the rat's performance in conditional visual discrimination task. Moreover, the levels of BDNF, TrkB, and Erk phosphorylation were decreased in the prefrontal cortex of CRS rats. However, these changes were effectively reversed by Rg1 (5 and 10 mg/kg, i.p.). Therefore, it demonstrated that Rg1 has a good ability to improve learning and memory and also ameliorate impaired adaptive capacity induced by CRS. This amelioration effect of Rg1 might be mediated partially by BDNF/TrkB/Erk pathway in prefrontal cortex. Copyright © 2016 John Wiley & Sons, Ltd.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ptr.5733DOI Listing

Publication Analysis

Top Keywords

learning memory
12
ginsenoside rg1
8
reward-directed instrumental
8
instrumental conditioning
8
chronic restraint
8
adaptive capacity
8
conditional visual
8
visual discrimination
8
discrimination task
8
prefrontal cortex
8

Similar Publications

Background: Predicting dementia early has major implications for clinical management and patient outcomes. Yet, we still lack sensitive tools for stratifying patients early, resulting in patients being undiagnosed or wrongly diagnosed. Despite rapid expansion in machine learning models for dementia prediction, limited model interpretability and generalizability impede translation to the clinic.

View Article and Find Full Text PDF

The transmembrane protein Synapse Differentiation Induced Gene 4 (SynDIG4) functions as an auxiliary factor of AMPA receptors (AMPARs) and plays a critical role in excitatory synapse plasticity as well as hippocampal-dependent learning and memory. Mice lacking SynDIG4 have reduced surface expression of GluA1 and GluA2 and are impaired in single tetanus-induced long-term potentiation and NMDA receptor (NMDAR)-dependent long-term depression. These findings suggest that SynDIG4 may play an important role in regulating AMPAR distribution through intracellular trafficking mechanisms; however, the precise roles by which SynDIG4 governs AMPAR distribution remain unclear.

View Article and Find Full Text PDF

Background: The diagnosis and treatment of epilepsy continue to face numerous challenges, highlighting the urgent need for the development of rapid, accurate, and non-invasive methods for seizure detection. In recent years, advancements in the analysis of electroencephalogram (EEG) signals have garnered widespread attention, particularly in the area of seizure recognition.

Methods: A novel hybrid deep learning approach that combines feature fusion for efficient seizure detection is proposed in this study.

View Article and Find Full Text PDF

Multimodal transcriptomics reveal neurogenic aging trajectories and age-related regional inflammation in the dentate gyrus.

Nat Neurosci

January 2025

Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland.

The mammalian dentate gyrus (DG) is involved in certain forms of learning and memory, and DG dysfunction has been implicated in age-related diseases. Although neurogenic potential is maintained throughout life in the DG as neural stem cells (NSCs) continue to generate new neurons, neurogenesis decreases with advancing age, with implications for age-related cognitive decline and disease. In this study, we used single-cell RNA sequencing to characterize transcriptomic signatures of neurogenic cells and their surrounding DG niche, identifying molecular changes associated with neurogenic aging from the activation of quiescent NSCs to the maturation of fate-committed progeny.

View Article and Find Full Text PDF

Connexin 43 contributes to perioperative neurocognitive disorder by attenuating perineuronal net of hippocampus in aged mice.

Cell Mol Life Sci

January 2025

Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative MedicineSchool of Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1239 Sanmen Road, Hongkou District, Shanghai, 200434, China.

Background: Perioperative neurocognitive disorder (PND) is a prevalent form of cognitive impairment in elderly patients following anesthesia and surgery. The underlying mechanisms of PND are closely related to perineuronal nets (PNNs). PNNs, which are complexes of extracellular matrix primarily surrounding neurons in the hippocampus, play a critical role in neurocognitive function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!