Microporous membranes fabricated from hydrophobic polymers such as polyvinylidene fluoride (PVDF) have been widely used for membrane distillation (MD). However, hydrophobic MD membranes are prone to wetting by low surface tension substances, thereby limiting their use in treating challenging industrial wastewaters, such as shale gas produced water. In this study, we present a facile and scalable approach for the fabrication of omniphobic polyvinylidene fluoride (PVDF) membranes that repel both water and oil. Positive surface charge was imparted to an alkaline-treated PVDF membrane by aminosilane functionalization, which enabled irreversible binding of negatively charged silica nanoparticles (SiNPs) to the membrane through electrostatic attraction. The membrane with grafted SiNPs was then coated with fluoroalkylsilane (perfluorodecyltrichlorosilane) to lower the membrane surface energy. Results from contact angle measurements with mineral oil and surfactant solution demonstrated that overlaying SiNPs with ultralow surface energy significantly enhanced the wetting resistance of the membrane against low surface tension liquids. We also evaluated desalination performance of the modified membrane in direct contact membrane distillation with a synthetic wastewater containing surfactant (sodium dodecyl sulfate) and mineral oil, as well as with shale gas produced water. The omniphobic membrane exhibited a stable MD performance, demonstrating its potential application for desalination of challenging industrial wastewaters containing diverse low surface tension contaminants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.6b03882 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!