Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Despite recent advances in the treatment of diabetes mellitus, storage of insulin formulations at 4 °C is still necessary to minimize chemical degradation. This is problematic in tropical regions where reliable refrigeration is not ubiquitous. Some degradation byproducts are caused by disulfide shuffling of cystine that leads to covalently bonded oligomers. Consequently we examined the utility of the non-reducible cystine isostere, cystathionine, within the A-chain. Reported herein is an efficient method for forming this mimic using simple monomeric building blocks. The intra-A-chain cystathionine insulin analogue was obtained in good overall yield, chemically characterized and demonstrated to possess native binding affinity for the insulin receptor isoform B. It was also shown to possess significantly enhanced thermal stability indicating potential application to next-generation insulin analogues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201607101 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!